Suppr超能文献

一种用于改进主要替代终点因果效应预测性估计的贝叶斯方法。

A Bayesian approach to improved estimation of causal effect predictiveness for a principal surrogate endpoint.

作者信息

Zigler Corwin M, Belin Thomas R

机构信息

Department of Biostatistics, Harvard School of Public Health, Boston, Massachusetts 02115, USA.

出版信息

Biometrics. 2012 Sep;68(3):922-32. doi: 10.1111/j.1541-0420.2011.01736.x. Epub 2012 Feb 20.

Abstract

The literature on potential outcomes has shown that traditional methods for characterizing surrogate endpoints in clinical trials based only on observed quantities can fail to capture causal relationships between treatments, surrogates, and outcomes. Building on the potential-outcomes formulation of a principal surrogate, we introduce a Bayesian method to estimate the causal effect predictiveness (CEP) surface and quantify a candidate surrogate's utility for reliably predicting clinical outcomes. In considering the full joint distribution of all potentially observable quantities, our Bayesian approach has the following features. First, our approach illuminates implicit assumptions embedded in previously-used estimation strategies that have been shown to result in poor performance. Second, our approach provides tools for making explicit and scientifically-interpretable assumptions regarding associations about which observed data are not informative. Through simulations based on an HIV vaccine trial, we found that the Bayesian approach can produce estimates of the CEP surface with improved performance compared to previous methods. Third, our approach can extend principal-surrogate estimation beyond the previously considered setting of a vaccine trial where the candidate surrogate is constant in one arm of the study. We illustrate this extension through an application to an AIDS therapy trial where the candidate surrogate varies in both treatment arms.

摘要

关于潜在结果的文献表明,在临床试验中仅基于观察到的量来表征替代终点的传统方法可能无法捕捉治疗、替代指标和结果之间的因果关系。基于主要替代指标的潜在结果公式,我们引入了一种贝叶斯方法来估计因果效应预测性(CEP)表面,并量化候选替代指标对可靠预测临床结果的效用。在考虑所有潜在可观察量的完整联合分布时,我们的贝叶斯方法具有以下特点。首先,我们的方法揭示了先前使用的估计策略中隐含的假设,这些假设已被证明会导致性能不佳。其次,我们的方法提供了工具,用于对关于观察数据无信息的关联做出明确且具有科学可解释性的假设。通过基于一项HIV疫苗试验的模拟,我们发现与先前方法相比,贝叶斯方法可以产生性能更好的CEP表面估计。第三,我们的方法可以将主要替代指标估计扩展到先前考虑的疫苗试验设置之外,在该试验中候选替代指标在研究的一个组中是恒定的。我们通过应用于一项艾滋病治疗试验来说明这种扩展,在该试验中候选替代指标在两个治疗组中都有所不同。

相似文献

2
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.

引用本文的文献

本文引用的文献

1
Principal stratification--uses and limitations.主分层——用途与局限性
Int J Biostat. 2011;7(1). doi: 10.2202/1557-4679.1329. Epub 2011 Jul 11.
6
Evaluating candidate principal surrogate endpoints.评估候选主要替代终点。
Biometrics. 2008 Dec;64(4):1146-54. doi: 10.1111/j.1541-0420.2008.01014.x. Epub 2008 Mar 24.
10
Principal stratification in causal inference.因果推断中的主分层
Biometrics. 2002 Mar;58(1):21-9. doi: 10.1111/j.0006-341x.2002.00021.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验