Suppr超能文献

纳米多孔氧化铝对炎症细胞反应的影响。

Effects of nanoporous alumina on inflammatory cell response.

作者信息

Pujari Shiuli, Hoess Andreas, Shen Jinhui, Thormann Annika, Heilmann Andreas, Tang Liping, Karlsson-Ott Marjam

机构信息

Applied Material Science, Department of Engineering Sciences, The Ångström Laboratory, Uppsala University, SE-751 21, Uppsala, Sweden.

出版信息

J Biomed Mater Res A. 2014 Nov;102(11):3773-80. doi: 10.1002/jbm.a.35048. Epub 2013 Dec 9.

Abstract

The present study focuses on the effects of nanoscale porosity on inflammatory response in vitro and in vivo. Nanoporous alumina membranes with different pore sizes, 20 and 200 nm in diameter, were used. We first evaluated cell/alumina interactions in vitro by observing adhesion, proliferation, and activation of a murine fibroblast and a macrophage cell line. To investigate the chronic inflammatory response, the membranes were implanted subcutaneously in mice for 2 weeks. Cell recruitment to the site of implantation was determined by histology and the production of cytokines was measured by protein array analysis. Both in vitro and in vivo studies showed that 200 nm pores induced a stronger inflammatory response as compared to the alumina with 20 nm pores. This was observed by an increase in macrophage activation in vitro as well as higher cell recruitment and generation of proinflammatory cytokines around the alumina with 200 nm pores, in vivo. Our results suggest that nanofeatures can be modulated in order to control the inflammatory response to implants.

摘要

本研究聚焦于纳米级孔隙率对体内外炎症反应的影响。使用了孔径分别为20纳米和200纳米的纳米多孔氧化铝膜。我们首先通过观察小鼠成纤维细胞和巨噬细胞系的黏附、增殖及活化情况,在体外评估细胞与氧化铝的相互作用。为研究慢性炎症反应,将这些膜皮下植入小鼠体内2周。通过组织学确定植入部位的细胞募集情况,并通过蛋白质阵列分析测量细胞因子的产生。体外和体内研究均表明,与孔径为20纳米的氧化铝相比,孔径为200纳米的孔隙引发了更强的炎症反应。这在体外表现为巨噬细胞活化增加,在体内则表现为孔径为200纳米的氧化铝周围有更高的细胞募集和促炎细胞因子生成。我们的结果表明,可以对纳米特征进行调节,以控制对植入物的炎症反应。

相似文献

1
Effects of nanoporous alumina on inflammatory cell response.
J Biomed Mater Res A. 2014 Nov;102(11):3773-80. doi: 10.1002/jbm.a.35048. Epub 2013 Dec 9.
2
Role of alumina nanoporosity in acute cell response.
J Nanosci Nanotechnol. 2011 Aug;11(8):6698-704. doi: 10.1166/jnn.2011.4206.
3
Self-supporting nanoporous alumina membranes as substrates for hepatic cell cultures.
J Biomed Mater Res A. 2012 Sep;100(9):2230-8. doi: 10.1002/jbm.a.34158. Epub 2012 Apr 10.
4
Effect of Collagen Nanofibers and Silanization on the Interaction of HaCaT Keratinocytes and 3T3 Fibroblasts with Alumina Nanopores.
ACS Appl Bio Mater. 2021 Feb 15;4(2):1852-1862. doi: 10.1021/acsabm.0c01538. Epub 2021 Feb 1.
5
Reduced oxidative stress in primary human cells by antioxidant released from nanoporous alumina.
J Biomed Mater Res B Appl Biomater. 2016 Apr;104(3):568-75. doi: 10.1002/jbm.b.33427. Epub 2015 May 7.
6
Atomic layer deposition-based functionalization of materials for medical and environmental health applications.
Philos Trans A Math Phys Eng Sci. 2010 Apr 28;368(1917):2033-64. doi: 10.1098/rsta.2010.0011.
8
Fabrication of thin film titania with nanopores, nanopoles, and nanopipes by nanoporous alumina template.
J Nanosci Nanotechnol. 2008 Sep;8(9):4808-12. doi: 10.1166/jnn.2008.ic84.
9
Morphological zeta-potential variation of nanoporous anodic alumina layers and cell adherence.
Acta Biomater. 2014 Feb;10(2):968-74. doi: 10.1016/j.actbio.2013.09.023. Epub 2013 Sep 29.
10
Understanding improved osteoblast behavior on select nanoporous anodic alumina.
Int J Nanomedicine. 2014 Jul 10;9:3325-34. doi: 10.2147/IJN.S60346. eCollection 2014.

引用本文的文献

1
Topography-based implants for bone regeneration: Design, biological mechanism, and therapeutics.
Mater Today Bio. 2025 Jul 13;34:102066. doi: 10.1016/j.mtbio.2025.102066. eCollection 2025 Oct.
2
Applications of Osteoimmunomodulation Models in Evaluating Osteogenic Biomaterials.
J Funct Biomater. 2025 Jun 11;16(6):217. doi: 10.3390/jfb16060217.
3
4
7
Nanomaterials, inflammation, and tissue engineering.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2015 May-Jun;7(3):355-70. doi: 10.1002/wnan.1320. Epub 2014 Nov 25.

本文引用的文献

1
The innate oxygen dependant immune pathway as a sensitive parameter to predict the performance of biological graft materials.
Biomaterials. 2012 Sep;33(27):6380-92. doi: 10.1016/j.biomaterials.2012.05.058. Epub 2012 Jun 26.
2
Role of alumina nanoporosity in acute cell response.
J Nanosci Nanotechnol. 2011 Aug;11(8):6698-704. doi: 10.1166/jnn.2011.4206.
3
The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis.
Biomaterials. 2012 Jan;33(3):876-85. doi: 10.1016/j.biomaterials.2011.10.002. Epub 2011 Oct 22.
4
Biomaterial implants mediate autologous stem cell recruitment in mice.
Acta Biomater. 2011 Nov;7(11):3887-95. doi: 10.1016/j.actbio.2011.06.050. Epub 2011 Jul 13.
5
Mitochondrial reactive oxygen species drive proinflammatory cytokine production.
J Exp Med. 2011 Mar 14;208(3):417-20. doi: 10.1084/jem.20110367. Epub 2011 Feb 28.
6
Nanoporosity of alumina surfaces induces different patterns of activation in adhering monocytes/macrophages.
Int J Biomater. 2010;2010:402715. doi: 10.1155/2010/402715. Epub 2010 Dec 28.
7
The effect of incorporation of SDF-1alpha into PLGA scaffolds on stem cell recruitment and the inflammatory response.
Biomaterials. 2010 May;31(14):3997-4008. doi: 10.1016/j.biomaterials.2010.01.144. Epub 2010 Feb 24.
8
A tissue-scale gradient of hydrogen peroxide mediates rapid wound detection in zebrafish.
Nature. 2009 Jun 18;459(7249):996-9. doi: 10.1038/nature08119. Epub 2009 Jun 3.
9
The inflammasomes: guardians of the body.
Annu Rev Immunol. 2009;27:229-65. doi: 10.1146/annurev.immunol.021908.132715.
10
Effects of artificial micro- and nano-structured surfaces on cell behaviour.
Ann Anat. 2009 Jan;191(1):126-35. doi: 10.1016/j.aanat.2008.05.006. Epub 2008 Jul 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验