Fei Yiyan, Landry James P, Li Yanhong, Yu Hai, Lau Kam, Huang Shengshu, Chokhawala Harshal A, Chen Xi, Zhu X D
Department of Physics, University of California, One Shields Avenue, Davis, California 95616, USA.
Rev Sci Instrum. 2013 Nov;84(11):114102. doi: 10.1063/1.4826352.
A biological state is equilibrium of multiple concurrent biomolecular reactions. The relative importance of these reactions depends on physiological temperature typically between 10 °C and 50 °C. Experimentally the temperature dependence of binding reaction constants reveals thermodynamics and thus details of these biomolecular processes. We developed a variable-temperature opto-fluidic system for real-time measurement of multiple (400-10,000) biomolecular binding reactions on solid supports from 10 °C to 60 °C within ±0.1 °C. We illustrate the performance of this system with investigation of binding reactions of plant lectins (carbohydrate-binding proteins) with 24 synthetic glycans (i.e., carbohydrates). We found that the lectin-glycan reactions in general can be enthalpy-driven, entropy-driven, or both, and water molecules play critical roles in the thermodynamics of these reactions.
生物状态是多种同时发生的生物分子反应的平衡状态。这些反应的相对重要性取决于通常在10℃至50℃之间的生理温度。通过实验,结合反应常数对温度的依赖性揭示了热力学,从而揭示了这些生物分子过程的细节。我们开发了一种可变温度的光流体系统,用于在±0.1℃范围内,在10℃至60℃之间实时测量固体支持物上的多个(400 - 10,000个)生物分子结合反应。我们通过研究植物凝集素(碳水化合物结合蛋白)与24种合成聚糖(即碳水化合物)的结合反应来说明该系统的性能。我们发现,凝集素 - 聚糖反应通常可以由焓驱动、熵驱动或两者共同驱动,并且水分子在这些反应的热力学中起着关键作用。