Suppr超能文献

水在微小的超微结构空间中存在,对骨骼的力学行为起着至关重要的作用。

Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.

机构信息

Department of Mechanical Engineering, The University of Texas at San Antonio, TX, USA.

Department of Chemistry, The University of Texas at San Antonio, TX, USA.

出版信息

Bone. 2014 Feb;59:199-206. doi: 10.1016/j.bone.2013.11.018. Epub 2013 Nov 27.

Abstract

Water may affect the mechanical behavior of bone by interacting with the mineral and organic phases through two major pathways: i.e. hydrogen bonding and polar interactions. In this study, dehydrated bone was soaked in several solvents (i.e. water, heavy water (D2O), ethylene glycol (EG), dimethylformamide (DMF), and carbon tetrachloride(CCl4)) that are chemically harmless to bone and different in polarity, hydrogen bonding capability and molecular size. The objective was to examine how replacing the original matrix water with the solvents would affect the mechanical behavior of bone. The mechanical properties of bone specimens soaked in these solvents were measured in tension in a progressive loading scheme. In addition, bone specimens without any treatments were tested as the baseline control whereas the dehydrated bone specimens served as the negative control. The experimental results indicated that 22.3±5.17vol% of original matrix water in bone could be replaced by CCl4, 71.8±3.77vol% by DMF, 85.5±5.15vol% by EG, and nearly 100% by D2O and H2O, respectively. CCl4 soaked specimens showed similar mechanical properties with the dehydrated ones. Despite of great differences in replacing water, only slight differences were observed in the mechanical behavior of EG and DMF soaked specimens compared with dehydrated bone samples. In contrast, D2O preserved the mechanical properties of bone comparable to water. The results of this study suggest that a limited portion of water (<15vol% of the original matrix water) plays a pivotal role in the mechanical behavior of bone and it most likely resides in small matrix spaces, into which the solvent molecules larger than 4.0Å cannot infiltrate.

摘要

水可以通过两种主要途径与矿物质和有机相相互作用来影响骨的力学性能

即氢键和极性相互作用。在这项研究中,将脱水骨浸泡在几种溶剂(即水、重水(D2O)、乙二醇(EG)、二甲基甲酰胺(DMF)和四氯化碳(CCl4))中,这些溶剂对骨骼无害,且在极性、氢键能力和分子大小方面存在差异。目的是研究用溶剂替代原始基质水会如何影响骨骼的力学性能。采用逐步加载方案,在张力下测量浸泡在这些溶剂中的骨标本的机械性能。此外,作为基线对照测试了未经任何处理的骨标本,而脱水骨标本则作为阴性对照。实验结果表明,骨中的原始基质水可被 CCl4 替代 22.3±5.17vol%,DMF 替代 71.8±3.77vol%,EG 替代 85.5±5.15vol%,D2O 和 H2O 几乎可替代 100%的原始基质水。CCl4 浸泡的标本与脱水的标本具有相似的机械性能。尽管在替代水方面存在巨大差异,但与脱水骨标本相比,EG 和 DMF 浸泡的标本的机械性能仅略有差异。相比之下,D2O 保持了与水相当的骨骼机械性能。这项研究的结果表明,一小部分水(原始基质水的<15vol%)在骨骼的力学行为中起着关键作用,它很可能存在于小的基质空间中,溶剂分子大于 4.0Å 无法渗透到这些空间中。

相似文献

1
Water residing in small ultrastructural spaces plays a critical role in the mechanical behavior of bone.
Bone. 2014 Feb;59:199-206. doi: 10.1016/j.bone.2013.11.018. Epub 2013 Nov 27.
2
Effect of water on nanomechanics of bone is different between tension and compression.
J Mech Behav Biomed Mater. 2016 Apr;57:128-38. doi: 10.1016/j.jmbbm.2015.12.001. Epub 2015 Dec 12.
3
Do stress-whitening and optical clearing of collagenous tissue occur by the same mechanism?
J Biomech. 2013 Sep 27;46(14):2411-8. doi: 10.1016/j.jbiomech.2013.07.026. Epub 2013 Jul 31.
6
Computational studies of liquid water and diluted water in carbon tetrachloride.
J Phys Chem A. 2008 Feb 28;112(8):1694-700. doi: 10.1021/jp711092v. Epub 2008 Jan 31.
7
Effects of three different preservation methods on the mechanical properties of human and bovine cortical bone.
Bone. 2010 Dec;47(6):1048-53. doi: 10.1016/j.bone.2010.08.012. Epub 2010 Aug 21.
9
Tensile behavior of cortical bone: dependence of organic matrix material properties on bone mineral content.
J Biomech. 2007;40(1):36-45. doi: 10.1016/j.jbiomech.2005.11.016. Epub 2006 Jan 24.
10
Mechanical behavior of human cortical bone in cycles of advancing tensile strain for two age groups.
J Biomed Mater Res A. 2009 May;89(2):521-9. doi: 10.1002/jbm.a.31974.

引用本文的文献

1
Ageing-Related Changes in Ultrastructural Bone Matrix Composition and Osteocyte Mechanosensitivity.
Curr Osteoporos Rep. 2025 Aug 12;23(1):35. doi: 10.1007/s11914-025-00927-0.
4
Assessment of Osteoporosis in Lumbar Spine: Quantitative MR Imaging of Collagen Bound Water in Trabecular Bone.
Front Endocrinol (Lausanne). 2022 Feb 16;13:801930. doi: 10.3389/fendo.2022.801930. eCollection 2022.
5
Bone hydration: How we can evaluate it, what can it tell us, and is it an effective therapeutic target?
Bone Rep. 2021 Dec 21;16:101161. doi: 10.1016/j.bonr.2021.101161. eCollection 2022 Jun.
6
Small leucine-rich proteoglycans in physiological and biomechanical function of bone.
Matrix Biol Plus. 2021 May 6;11:100063. doi: 10.1016/j.mbplus.2021.100063. eCollection 2021 Aug.
7
Removal of glycosaminoglycans affects the in situ mechanical behavior of extrafibrillar matrix in bone.
J Mech Behav Biomed Mater. 2021 Nov;123:104766. doi: 10.1016/j.jmbbm.2021.104766. Epub 2021 Aug 10.
8
Molecular origin of viscoelasticity in mineralized collagen fibrils.
Biomater Sci. 2021 May 4;9(9):3390-3400. doi: 10.1039/d0bm02003f.
9
Hardness, an Important Indicator of Bone Quality, and the Role of Collagen in Bone Hardness.
J Funct Biomater. 2020 Dec 1;11(4):85. doi: 10.3390/jfb11040085.
10
Biglycan and chondroitin sulfate play pivotal roles in bone toughness via retaining bound water in bone mineral matrix.
Matrix Biol. 2020 Dec;94:95-109. doi: 10.1016/j.matbio.2020.09.002. Epub 2020 Sep 28.

本文引用的文献

1
Clinically compatible MRI strategies for discriminating bound and pore water in cortical bone.
Magn Reson Med. 2012 Dec;68(6):1774-84. doi: 10.1002/mrm.24186. Epub 2012 Jan 31.
4
Characterization of 1H NMR signal in human cortical bone for magnetic resonance imaging.
Magn Reson Med. 2010 Sep;64(3):680-7. doi: 10.1002/mrm.22459.
5
Differences in the mechanical behavior of cortical bone between compression and tension when subjected to progressive loading.
J Mech Behav Biomed Mater. 2009 Dec;2(6):613-9. doi: 10.1016/j.jmbbm.2008.11.008. Epub 2008 Dec 13.
6
Progressive post-yield behavior of human cortical bone in compression for middle-aged and elderly groups.
J Biomech. 2009 Mar 11;42(4):491-7. doi: 10.1016/j.jbiomech.2008.11.016. Epub 2009 Jan 17.
7
The effect of heparin-functionalized PEG hydrogels on three-dimensional human mesenchymal stem cell osteogenic differentiation.
Biomaterials. 2007 Jan;28(1):66-77. doi: 10.1016/j.biomaterials.2006.08.033. Epub 2006 Sep 8.
8
Three structural roles for water in bone observed by solid-state NMR.
Biophys J. 2006 May 15;90(10):3722-31. doi: 10.1529/biophysj.105.070243. Epub 2006 Feb 24.
9
The influence of water removal on the strength and toughness of cortical bone.
J Biomech. 2006;39(5):931-8. doi: 10.1016/j.jbiomech.2005.01.012.
10
Characterization of chemically induced hepatotoxicity in collagen sandwiches of rat hepatocytes.
Toxicol Sci. 2005 Jun;85(2):927-34. doi: 10.1093/toxsci/kfi145. Epub 2005 Mar 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验