Department of Microbiology and Immunology, University of Maryland School of Medicine, Institute of Marine and Environmental Technology, University System of Maryland, Columbus Center, 701 E. Pratt St., Baltimore, MD, 21202, USA.
Appl Microbiol Biotechnol. 2014 Feb;98(4):1737-47. doi: 10.1007/s00253-013-5368-x. Epub 2013 Nov 29.
Halobacterium sp. NRC-1 is a wild-type extremophilic microbe that is naturally tolerant to high levels of ionizing radiation. Mutants of strain NRC-1 with even higher levels of resistance to ionizing radiation, named RAD, were previously isolated after selecting survival to extremely high doses of ionizing radiation. These RAD mutants displayed higher transcription levels for the rfa3 operon, coding two subunits of the RPA-like putative single-stranded binding protein, rfa3 and rfa8, and a third downstream gene, ral. In order to bioengineer cells with increased tolerance to ionizing radiation and further explore the genetic basis of the RAD phenotype, we placed the rfa3 operon under control of the gvpA promoter in a Halobacterium expression plasmid, pDRK1. When pDRK1 was introduced into the wild-type NRC-1 strain, overproduction of the Rfa3 and Rfa8 proteins was observed by Western blotting and proteomic analysis. The Halobacterium strains expressing Rfa3 and Rfa8 also displayed improved survival after exposure to ionizing radiation, similar to the RAD mutants, when compared to wild-type strain NRC-1. The Rfa3 and Rfa8 proteins co-purified by affinity chromatography on single-stranded DNA cellulose columns, confirming the ability of the proteins to bind to single-stranded DNA as well as their relative abundance in the wild-type, RAD mutants, and rfa3 operon overexpression strains. These results clearly establish that overexpression of haloarchaeal RPA promotes ionizing radiation resistance in Halobacterium sp. NRC-1 and that the Rfa3 and Rfa8 subunits bind single-stranded DNA. Bioengineering cells with increased levels of ionizing radiation resistance may have potential value in medical and environmental applications.
嗜盐菌 NRC-1 是一种天然耐受高水平电离辐射的野生型极端微生物。先前,通过选择对极高剂量电离辐射的存活能力,从 NRC-1 株中分离出了具有更高水平电离辐射抗性的 RAD 突变体。这些 RAD 突变体显示出 rfa3 操纵子更高的转录水平,该操纵子编码 RPA 样假定单链结合蛋白的两个亚基 rfa3 和 rfa8,以及第三个下游基因 ral。为了构建对电离辐射具有更高耐受性的工程细胞,并进一步探索 RAD 表型的遗传基础,我们将 rfa3 操纵子置于 Halobacterium 表达质粒 pDRK1 的 gvpA 启动子控制下。当将 pDRK1 引入野生型 NRC-1 菌株时,通过 Western blot 和蛋白质组学分析观察到 Rfa3 和 Rfa8 蛋白的过度表达。与野生型 NRC-1 菌株相比,表达 Rfa3 和 Rfa8 的 Halobacterium 菌株在暴露于电离辐射后也表现出更好的存活能力,类似于 RAD 突变体。Rfa3 和 Rfa8 蛋白通过单链 DNA 纤维素柱亲和层析共纯化,证实了这些蛋白结合单链 DNA 的能力以及它们在野生型、RAD 突变体和 rfa3 操纵子过表达菌株中的相对丰度。这些结果清楚地表明,嗜盐古菌 RPA 的过表达促进了 Halobacterium sp. NRC-1 对电离辐射的抗性,并且 Rfa3 和 Rfa8 亚基结合单链 DNA。提高电离辐射抗性的工程细胞在医学和环境应用中可能具有潜在价值。