King Abdullah University of Science and Technology (KAUST), KAUST Catalysis Center, Thuwal, 23955-6900, Saudi Arabia.
Biological and Environmental Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia.
J Nanobiotechnology. 2023 Mar 25;21(1):108. doi: 10.1186/s12951-023-01866-7.
Various bacteria and archaea, including halophilic archaeon Halobacterium sp. NRC-1 produce gas vesicle nanoparticles (GVNPs), a unique class of stable, air-filled intracellular proteinaceous nanostructures. GVNPs are an attractive tool for biotechnological applications due to their readily production, purification, and unique physical properties. GVNPs are spindle- or cylinder-shaped, typically with a length of 100 nm to 1.5 μm and a width of 30-250 nm. Multiple monomeric subunits of GvpA and GvpC proteins form the GVNP shell, and several additional proteins are required as minor structural or assembly proteins. The haloarchaeal genetic system has been successfully used to produce and bioengineer GVNPs by fusing several foreign proteins with GvpC and has shown various applications, such as biocatalysis, diagnostics, bioimaging, drug delivery, and vaccine development.
We demonstrated that native GvpC can be removed in a low salt buffer during the GVNP purification, leaving the GvpA-based GVNP's shell intact and stable under physiological conditions. Here, we report a genetic engineering and chemical modification approach for functionalizing the major GVNP protein, GvpA. This novel approach is based on combinatorial cysteine mutagenesis within GvpA and genetic expansion of the N-terminal and C-terminal regions. Consequently, we generated GvpA single, double, and triple cysteine variant libraries and investigated the impact of mutations on the structure and physical shape of the GVNPs formed. We used a thiol-maleimide chemistry strategy to introduce the biotechnological relevant activity by maleimide-activated streptavidin-biotin and maleimide-activated SpyTag003-SpyCatcher003 mediated functionalization of GVNPs.
The merger of these genetic and chemical functionalization approaches significantly extends these novel protein nanomaterials' bioengineering and functionalization potential to assemble catalytically active proteins, biomaterials, and vaccines onto one nanoparticle in a modular fashion.
包括嗜盐古菌盐杆菌 NRC-1 在内的各种细菌和古菌都能产生气 囊纳米颗粒(GVNP),这是一类独特的稳定、充满空气的细胞内蛋白纳米结构。由于其易于生产、纯化和独特的物理特性,GVNP 是生物技术应用的有吸引力的工具。GVNP 呈纺锤形或圆柱形,通常长 100nm 至 1.5μm,宽 30-250nm。GvpA 和 GvpC 蛋白的多个单体亚基形成 GVNP 壳,还需要几种额外的蛋白质作为次要结构或组装蛋白。已成功将 haloarchaeal 遗传系统用于通过将几种外源蛋白与 GvpC 融合来生产和生物工程化 GVNP,并展示了各种应用,如生物催化、诊断、生物成像、药物输送和疫苗开发。
我们证明,在 GVNP 纯化过程中,在低盐缓冲液中可以去除天然 GvpC,从而使 GvpA 为基础的 GVNP 壳在生理条件下保持完整和稳定。在这里,我们报告了一种用于功能化主要 GVNP 蛋白 GvpA 的遗传工程和化学修饰方法。这种新方法基于 GvpA 内组合半胱氨酸突变和 N 端和 C 端区域的遗传扩展。因此,我们生成了 GvpA 单、双和三半胱氨酸变异文库,并研究了突变对形成的 GVNP 结构和物理形状的影响。我们使用硫醇-马来酰亚胺化学策略,通过马来酰亚胺活化的链霉亲和素-生物素和马来酰亚胺活化的 SpyTag003-SpyCatcher003 介导的 GVNP 功能化,引入生物技术相关的活性。
这些遗传和化学功能化方法的结合极大地扩展了这些新型蛋白质纳米材料的生物工程和功能化潜力,可将催化活性蛋白、生物材料和疫苗以模块化方式组装到一个纳米颗粒上。