Suppr超能文献

基于混合连接和张量特征的扩散张量图像配准。

Diffusion tensor image registration using hybrid connectivity and tensor features.

机构信息

Med-X Research Institute, Shanghai Jiao Tong University, Shanghai; Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina.

出版信息

Hum Brain Mapp. 2014 Jul;35(7):3529-46. doi: 10.1002/hbm.22419. Epub 2013 Nov 30.

Abstract

Most existing diffusion tensor imaging (DTI) registration methods estimate structural correspondences based on voxelwise matching of tensors. The rich connectivity information that is given by DTI, however, is often neglected. In this article, we propose to integrate complementary information given by connectivity features and tensor features for improved registration accuracy. To utilize connectivity information, we place multiple anchors representing different brain anatomies in the image space, and define the connectivity features for each voxel as the geodesic distances from all anchors to the voxel under consideration. The geodesic distance, which is computed in relation to the tensor field, encapsulates information of brain connectivity. We also extract tensor features for every voxel to reflect the local statistics of tensors in its neighborhood. We then combine both connectivity features and tensor features for registration of tensor images. From the images, landmarks are selected automatically and their correspondences are determined based on their connectivity and tensor feature vectors. The deformation field that deforms one tensor image to the other is iteratively estimated and optimized according to the landmarks and their associated correspondences. Experimental results show that, by using connectivity features and tensor features simultaneously, registration accuracy is increased substantially compared with the cases using either type of features alone.

摘要

大多数现有的扩散张量成像 (DTI) 配准方法都是基于张量的体素匹配来估计结构对应关系。然而,DTI 提供的丰富连接信息往往被忽视。在本文中,我们提出将连通性特征和张量特征提供的互补信息结合起来,以提高配准精度。为了利用连通性信息,我们在图像空间中放置多个代表不同大脑解剖结构的锚点,并为每个体素定义连通性特征,即从所有锚点到所考虑体素的测地距离。测地距离是相对于张量场计算的,它包含了大脑连接的信息。我们还为每个体素提取张量特征,以反映其邻域中张量的局部统计信息。然后,我们将连通性特征和张量特征结合起来进行张量图像的配准。从图像中自动选择地标,并根据它们的连通性和张量特征向量确定它们的对应关系。根据地标及其相关联的对应关系,迭代地估计和优化变形场,以将一个张量图像变形到另一个张量图像上。实验结果表明,与单独使用任一类特征的情况相比,同时使用连通性特征和张量特征可以显著提高配准精度。

相似文献

4
Diffusion tensor image registration with combined tract and tensor features.结合纤维束和张量特征的扩散张量图像配准
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):200-8. doi: 10.1007/978-3-642-23629-7_25.
5
F-TIMER: fast tensor image morphing for elastic registration.F-TIMER:用于弹性配准的快速张量图像变形。
IEEE Trans Med Imaging. 2010 May;29(5):1192-203. doi: 10.1109/TMI.2010.2043680. Epub 2010 Mar 18.
7
TIMER: tensor image morphing for elastic registration.TIMER:用于弹性配准的张量图像变形
Neuroimage. 2009 Aug 15;47(2):549-63. doi: 10.1016/j.neuroimage.2009.04.055. Epub 2009 May 3.

引用本文的文献

8
Group-wise consistent cortical parcellation based on connectional profiles.基于连接模式的组内一致皮质分块
Med Image Anal. 2016 Aug;32:32-45. doi: 10.1016/j.media.2016.02.009. Epub 2016 Mar 14.
10

本文引用的文献

2
Application of neuroanatomical features to tractography clustering.神经解剖学特征在束流聚类中的应用。
Hum Brain Mapp. 2013 Sep;34(9):2089-102. doi: 10.1002/hbm.22051. Epub 2012 Mar 28.
3
Diffusion tensor image registration with combined tract and tensor features.结合纤维束和张量特征的扩散张量图像配准
Med Image Comput Comput Assist Interv. 2011;14(Pt 2):200-8. doi: 10.1007/978-3-642-23629-7_25.
4
Intermediate templates guided groupwise registration of diffusion tensor images.中间模板引导的弥散张量图像配准组。
Neuroimage. 2011 Jan 15;54(2):928-39. doi: 10.1016/j.neuroimage.2010.09.019. Epub 2010 Sep 17.
5
Diffeomorphic Matching of Diffusion Tensor Images.扩散张量图像的微分同胚匹配
Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2006 Jul 5;2006:67. doi: 10.1109/CVPRW.2006.65.
6
F-TIMER: fast tensor image morphing for elastic registration.F-TIMER:用于弹性配准的快速张量图像变形。
IEEE Trans Med Imaging. 2010 May;29(5):1192-203. doi: 10.1109/TMI.2010.2043680. Epub 2010 Mar 18.
7
Attribute vector guided groupwise registration.基于属性向量的配准。
Neuroimage. 2010 May 1;50(4):1485-96. doi: 10.1016/j.neuroimage.2010.01.040. Epub 2010 Jan 22.
9
TIMER: tensor image morphing for elastic registration.TIMER:用于弹性配准的张量图像变形
Neuroimage. 2009 Aug 15;47(2):549-63. doi: 10.1016/j.neuroimage.2009.04.055. Epub 2009 May 3.
10
Diffeomorphic demons: efficient non-parametric image registration.微分同胚恶魔算法:高效的非参数图像配准
Neuroimage. 2009 Mar;45(1 Suppl):S61-72. doi: 10.1016/j.neuroimage.2008.10.040. Epub 2008 Nov 7.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验