Suppr超能文献

基于属性向量的配准。

Attribute vector guided groupwise registration.

机构信息

Department of Computer Science, University of North Carolina at Chapel Hill, NC 27599, USA.

出版信息

Neuroimage. 2010 May 1;50(4):1485-96. doi: 10.1016/j.neuroimage.2010.01.040. Epub 2010 Jan 22.

Abstract

Groupwise registration has been recently introduced to simultaneously register a group of images by avoiding the selection of a particular template. To achieve this, several methods have been proposed to take advantage of information-theoretic entropy measures based on image intensity. However, simplistic utilization of voxelwise image intensity is not sufficient to establish reliable correspondences, since it lacks important contextual information. Therefore, we explore the notion of attribute vector as the voxel signature, instead of image intensity, to guide the correspondence detection in groupwise registration. In particular, for each voxel, the attribute vector is computed from its multi-scale neighborhoods, in order to capture the geometric information at different scales. The probability density function (PDF) of each element in the attribute vector is then estimated from the local neighborhood, providing a statistical summary of the underlying anatomical structure in that local pattern. Eventually, with the help of Jensen-Shannon (JS) divergence, a group of subjects can be aligned simultaneously by minimizing the sum of JS divergences across the image domain and all attributes. We have employed our groupwise registration algorithm on both real (NIREP NA0 data set) and simulated data (12 pairs of normal control and simulated atrophic data set). The experimental results demonstrate that our method yields better registration accuracy, compared with a popular groupwise registration method.

摘要

组间配准最近被引入,以通过避免选择特定模板来同时注册一组图像。为此,已经提出了几种方法来利用基于图像强度的信息论熵度量来实现这一点。然而,简单地利用体素级图像强度不足以建立可靠的对应关系,因为它缺乏重要的上下文信息。因此,我们探索了属性向量的概念作为体素特征,而不是图像强度,以指导组间配准中的对应检测。具体来说,对于每个体素,属性向量是从其多尺度邻域计算得到的,以捕获不同尺度的几何信息。然后,从局部邻域估计属性向量中每个元素的概率密度函数 (PDF),从而提供该局部模式下潜在解剖结构的统计摘要。最终,借助 Jensen-Shannon (JS) 散度,可以通过最小化图像域和所有属性的 JS 散度之和来同时对齐一组对象。我们已经在真实(NIREP NA0 数据集)和模拟数据(12 对正常对照和模拟萎缩数据集)上使用了我们的组间配准算法。实验结果表明,与流行的组间配准方法相比,我们的方法具有更好的配准精度。

相似文献

1
Attribute vector guided groupwise registration.基于属性向量的配准。
Neuroimage. 2010 May 1;50(4):1485-96. doi: 10.1016/j.neuroimage.2010.01.040. Epub 2010 Jan 22.
2
Attribute vector guided groupwise registration.属性向量引导的分组配准
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):656-63. doi: 10.1007/978-3-642-04268-3_81.
4
Groupwise registration by hierarchical anatomical correspondence detection.通过分层解剖对应检测进行分组配准。
Med Image Comput Comput Assist Interv. 2010;13(Pt 2):684-91. doi: 10.1007/978-3-642-15745-5_84.
9
A statistical framework for inter-group image registration.用于组间图像配准的统计框架。
Neuroinformatics. 2012 Oct;10(4):367-78. doi: 10.1007/s12021-012-9156-z.
10
GROUPWISE REGISTRATION FROM EXEMPLAR TO GROUP MEAN: EXTENDING HAMMER TO GROUPWISE REGISTRATION.从范例到组均值的分组配准:将Hammer扩展到分组配准
Proc IEEE Int Symp Biomed Imaging. 2010 Apr 17;2010(14-17 April 2010):396-399. doi: 10.1109/ISBI.2010.5490327.

引用本文的文献

6
Improved image registration by sparse patch-based deformation estimation.基于稀疏块的变形估计改进图像配准
Neuroimage. 2015 Jan 15;105:257-68. doi: 10.1016/j.neuroimage.2014.10.019. Epub 2014 Oct 16.
9
Registration of challenging pre-clinical brain images.挑战性临床前脑图像的注册。
J Neurosci Methods. 2013 May 30;216(1):62-77. doi: 10.1016/j.jneumeth.2013.03.015. Epub 2013 Apr 1.

本文引用的文献

1
The role of image registration in brain mapping.图像配准在脑图谱绘制中的作用。
Image Vis Comput. 2001 Jan 1;19(1-2):3-24. doi: 10.1016/S0262-8856(00)00055-X.
3
Registration of cervical MRI using multifeature mutual information.使用多特征互信息进行颈椎磁共振成像配准。
IEEE Trans Med Imaging. 2009 Sep;28(9):1412-21. doi: 10.1109/TMI.2009.2016560. Epub 2009 Mar 10.
6
Simultaneous nonrigid registration of multiple point sets and atlas construction.多点集的同步非刚性配准与图谱构建
IEEE Trans Pattern Anal Mach Intell. 2008 Nov;30(11):2011-22. doi: 10.1109/TPAMI.2007.70829.
7
Deformable templates using large deformation kinematics.使用大变形运动学的可变形模板。
IEEE Trans Image Process. 1996;5(10):1435-47. doi: 10.1109/83.536892.
8
Robust computation of mutual information using spatially adaptive meshes.使用空间自适应网格进行互信息的稳健计算。
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):950-8. doi: 10.1007/978-3-540-75757-3_115.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验