Suppr超能文献

影响黑曲霉单宁酶生产的一些因素。

Some factors affecting tannase production by Aspergillus niger Van Tieghem.

机构信息

Department of Food Science and Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.

出版信息

Braz J Microbiol. 2013 Oct 30;44(2):559-67. doi: 10.1590/S1517-83822013000200036. eCollection 2013.

Abstract

One variable at a time procedure was used to evaluate the effect of qualitative variables on the production of tannase from Aspergillus niger Van Tieghem. These variables including: fermentation technique, agitation condition, tannins source, adding carbohydrates incorporation with tannic acid, nitrogen source type and divalent cations. Submerged fermentation under intermittent shaking gave the highest total tannase activity. Maximum extracellular tannase activity (305 units/50 mL) was attained in medium containing tannic acid as tannins source and sodium nitrate as nitrogen source at 30 °C for 96 h. All added carbohydrates showed significant adverse effects on the production of tannase. All tested divalent cations significantly decreased tannase production. Moreover, split plot design was carried out to study the effect of fermentation temperature and fermentation time on tannase production. The results indicated maximum tannase production (312.7 units/50 mL) at 35 °C for 96 h. In other words, increasing fermentation temperature from 30 °C to 35 °C resulted in increasing tannase production.

摘要

采用单变量法评估定性变量对黑曲霉单宁酶生产的影响。这些变量包括:发酵技术、搅拌条件、单宁来源、添加碳水化合物与没食子酸结合、氮源类型和二价阳离子。间歇摇瓶发酵的总单宁酶活性最高。在以没食子酸为单宁源、硝酸钠为氮源的培养基中,在 30°C 下培养 96 小时,可获得最大的胞外单宁酶活性(305 单位/50mL)。所有添加的碳水化合物对单宁酶的生产均有显著的不利影响。所有测试的二价阳离子均显著降低了单宁酶的产量。此外,还进行了裂区设计,以研究发酵温度和发酵时间对单宁酶生产的影响。结果表明,在 35°C 下发酵 96 小时可获得最大的单宁酶产量(312.7 单位/50mL)。换句话说,将发酵温度从 30°C 升高到 35°C 会导致单宁酶产量增加。

相似文献

1
Some factors affecting tannase production by Aspergillus niger Van Tieghem.
Braz J Microbiol. 2013 Oct 30;44(2):559-67. doi: 10.1590/S1517-83822013000200036. eCollection 2013.
6
Differential properties of Aspergillus niger tannase produced under solid-state and submerged fermentations.
Appl Biochem Biotechnol. 2011 Sep;165(1):382-95. doi: 10.1007/s12010-011-9258-3. Epub 2011 Apr 19.
7
Influence of agitation speed on tannase production and morphology of Aspergillus niger FETL FT3 in submerged fermentation.
Appl Biochem Biotechnol. 2011 Dec;165(7-8):1682-90. doi: 10.1007/s12010-011-9387-8. Epub 2011 Sep 27.
8
Production of tannase under solid-state fermentation and its application in detannification of guava juice.
Prep Biochem Biotechnol. 2014;44(3):281-90. doi: 10.1080/10826068.2013.812566.
9
Catalytic and thermodynamic properties of a tannase produced by Aspergillus niger GH1 grown on polyurethane foam.
Appl Biochem Biotechnol. 2011 Nov;165(5-6):1141-51. doi: 10.1007/s12010-011-9331-y. Epub 2011 Aug 12.
10
Gallic Acid Production with Mouldy Polyurethane Particles Obtained from Solid State Culture of Aspergillus niger GH1.
Appl Biochem Biotechnol. 2015 Jun;176(4):1131-40. doi: 10.1007/s12010-015-1634-y. Epub 2015 Apr 29.

引用本文的文献

1
Biochemical and Structural Characterization of a Novel Bacterial Tannase From in Ruminant Gastrointestinal Tract.
Front Bioeng Biotechnol. 2021 Dec 15;9:806788. doi: 10.3389/fbioe.2021.806788. eCollection 2021.

本文引用的文献

1
Statistical optimization for tannase production from Aspergillus niger under submerged fermentation.
Indian J Microbiol. 2007 Jun;47(2):132-8. doi: 10.1007/s12088-007-0026-6. Epub 2007 Jul 8.
2
Tannase production by solid state fermentation of cashew apple bagasse.
Appl Biochem Biotechnol. 2007 Apr;137-140(1-12):675-88. doi: 10.1007/s12010-007-9088-5.
3
Characterization of tannase activity in cell-free extracts of Lactobacillus plantarum CECT 748T.
Int J Food Microbiol. 2008 Jan 15;121(1):92-8. doi: 10.1016/j.ijfoodmicro.2007.11.002. Epub 2007 Nov 12.
4
Optimization of tannase production by Aureobasidium pullulans DBS66.
J Microbiol Biotechnol. 2007 Jun;17(6):1049-53.
5
Purification, immobilization and characterization of tannase from Penicillium variable.
Bioresour Technol. 2008 May;99(7):2544-51. doi: 10.1016/j.biortech.2007.04.035. Epub 2007 Jun 13.
6
Microbial tannases: advances and perspectives.
Appl Microbiol Biotechnol. 2007 Aug;76(1):47-59. doi: 10.1007/s00253-007-1000-2. Epub 2007 May 26.
7
Production of tannase from Aspergillus ruber under solid-state fermentation using jamun (Syzygium cumini) leaves.
Microbiol Res. 2007;162(4):384-90. doi: 10.1016/j.micres.2006.06.012. Epub 2006 Jul 25.
10
Microbial transformation of tannin-rich substrate to gallic acid through co-culture method.
Bioresour Technol. 2005 May;96(8):949-53. doi: 10.1016/j.biortech.2004.08.004.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验