Puri Aaron W, Schaefer Amy L, Fu Yanfen, Beck David A C, Greenberg E Peter, Lidstrom Mary E
Department of Chemical Engineering, University of Washington, Seattle, Washington, USA
Department of Microbiology, University of Washington, Seattle, Washington, USA.
J Bacteriol. 2017 Feb 14;199(5). doi: 10.1128/JB.00773-16. Print 2017 Mar 1.
Aerobic methanotrophic bacteria use methane as their sole source of carbon and energy and serve as a major sink for the potent greenhouse gas methane in freshwater ecosystems. Dissecting the molecular details of how these organisms interact in the environment may increase our understanding of how they perform this important ecological role. Many bacterial species use quorum sensing (QS) systems to regulate gene expression in a cell density-dependent manner. We have identified a QS system in the genome of , a dominant methane oxidizer in methane enrichments of sediment from Lake Washington (Seattle, WA). We determined that produces primarily -3-hydroxydecanoyl-l-homoserine lactone (3-OH-C-HSL) and that its production is governed by a positive feedback loop. We then further characterized this system by determining which genes are regulated by QS in this methane oxidizer using transcriptome sequencing (RNA-seq) and discovered that this system regulates the expression of a putative nonribosomal peptide synthetase biosynthetic gene cluster. Finally, we detected an extracellular factor that is produced by in a QS-dependent manner. These results identify and characterize a mode of cellular communication in an aerobic methane-oxidizing bacterium. Aerobic methanotrophs are critical for sequestering carbon from the potent greenhouse gas methane in the environment, yet the mechanistic details of chemical interactions in methane-oxidizing bacterial communities are not well understood. Understanding these interactions is important in order to maintain, and potentially optimize, the functional potential of the bacteria that perform this vital ecosystem function. In this work, we identify a quorum sensing system in the aerobic methanotroph and use both chemical and genetic methods to characterize this system at the molecular level.
好氧甲烷氧化细菌以甲烷作为其唯一的碳源和能源,是淡水生态系统中强效温室气体甲烷的主要汇。剖析这些生物体在环境中如何相互作用的分子细节,可能会增进我们对它们如何发挥这一重要生态作用的理解。许多细菌物种利用群体感应(QS)系统以细胞密度依赖的方式调节基因表达。我们在 的基因组中鉴定出一个QS系统, 是华盛顿湖(华盛顿州西雅图)沉积物甲烷富集物中的优势甲烷氧化菌。我们确定 主要产生 -3-羟基癸酰-L-高丝氨酸内酯(3-OH-C-HSL),并且其产生受正反馈回路控制。然后,我们通过使用转录组测序(RNA-seq)确定该甲烷氧化菌中哪些基因受QS调控,进一步对该系统进行了表征,并发现该系统调节一个假定的非核糖体肽合成酶生物合成基因簇的表达。最后,我们检测到一种由 以QS依赖的方式产生的细胞外因子。这些结果鉴定并表征了一种好氧甲烷氧化细菌中的细胞通讯模式。好氧甲烷氧化菌对于从环境中的强效温室气体甲烷中封存碳至关重要,然而甲烷氧化细菌群落中化学相互作用的机制细节尚未得到很好的理解。了解这些相互作用对于维持并可能优化执行这一重要生态系统功能的细菌的功能潜力很重要。在这项工作中,我们在好氧甲烷氧化菌 中鉴定出一个群体感应系统,并使用化学和遗传方法在分子水平上对该系统进行表征。