Suppr超能文献

肌营养不良蛋白 ZZ 结构域:理解错义突变。

The ZZ domain of dystrophin in DMD: making sense of missense mutations.

机构信息

The Center for Gene Therapy, The Research Institute at Nationwide Children's Hospital, Columbus, Ohio.

出版信息

Hum Mutat. 2014 Feb;35(2):257-64. doi: 10.1002/humu.22479. Epub 2013 Dec 2.

Abstract

Duchenne muscular dystrophy (DMD) is associated with the loss of dystrophin, which plays an important role in myofiber integrity via interactions with β-dystroglycan and other members of the transmembrane dystrophin-associated protein complex. The ZZ domain, a cysteine-rich zinc-finger domain near the dystrophin C-terminus, is implicated in forming a stable interaction between dystrophin and β-dystroglycan, but the mechanism of pathogenesis of ZZ missense mutations has remained unclear because not all such mutations have been shown to alter β-dystroglycan binding in previous experimental systems. We engineered three ZZ mutations (p.Cys3313Phe, p.Asp3335His, and p.Cys3340Tyr) into a short construct similar to the Dp71 dystrophin isoform for in vitro and in vivo studies and delineated their effect on protein expression, folding properties, and binding partners. Our results demonstrate two distinct pathogenic mechanisms for ZZ missense mutations. The cysteine mutations result in diminished or absent subsarcolemmal expression because of protein instability, likely due to misfolding. In contrast, the aspartic acid mutation disrupts binding with β-dystroglycan despite an almost normal expression at the membrane, confirming a role for the ZZ domain in β-dystroglycan binding but surprisingly demonstrating that such binding is not required for subsarcolemmal localization of dystrophin, even in the absence of actin binding domains.

摘要

杜氏肌营养不良症(DMD)与肌营养不良蛋白的缺失有关,肌营养不良蛋白通过与β-肌聚糖和跨膜肌营养不良相关蛋白复合物的其他成员相互作用,在肌纤维完整性中发挥重要作用。ZZ 结构域是肌营养不良蛋白 C 末端附近富含半胱氨酸的锌指结构域,参与形成肌营养不良蛋白和β-肌聚糖之间的稳定相互作用,但 ZZ 错义突变的发病机制仍不清楚,因为并非所有这些突变都已在先前的实验系统中显示改变β-肌聚糖结合。我们将三个 ZZ 突变(p.Cys3313Phe、p.Asp3335His 和 p.Cys3340Tyr)构建到类似于 Dp71 肌营养不良蛋白同工型的短构建体中,用于体外和体内研究,并阐明了它们对蛋白质表达、折叠特性和结合伙伴的影响。我们的结果表明 ZZ 错义突变有两种不同的致病机制。半胱氨酸突变导致蛋白不稳定,因为蛋白不稳定导致亚肌膜表达减少或缺失,可能是由于错误折叠。相比之下,尽管在膜上几乎正常表达,但天冬氨酸突变破坏了与β-肌聚糖的结合,这证实了 ZZ 结构域在β-肌聚糖结合中的作用,但令人惊讶的是,即使在没有肌动蛋白结合结构域的情况下,这种结合对于肌营养不良蛋白的亚肌膜定位也不是必需的。

相似文献

1
The ZZ domain of dystrophin in DMD: making sense of missense mutations.
Hum Mutat. 2014 Feb;35(2):257-64. doi: 10.1002/humu.22479. Epub 2013 Dec 2.
3
ZZ domain is essentially required for the physiological binding of dystrophin and utrophin to beta-dystroglycan.
Hum Mol Genet. 2004 Apr 1;13(7):693-702. doi: 10.1093/hmg/ddh087. Epub 2004 Feb 12.
4
Mini-dystrophin efficiently incorporates into the dystrophin protein complex in living cells.
J Muscle Res Cell Motil. 2006;27(1):53-67. doi: 10.1007/s10974-006-9055-8. Epub 2006 Feb 23.
5
The WW domain of dystrophin requires EF-hands region to interact with beta-dystroglycan.
Biol Chem. 1999 Apr;380(4):431-42. doi: 10.1515/BC.1999.057.
7
Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9632-7. doi: 10.1073/pnas.1001517107. Epub 2010 May 10.

引用本文的文献

2
Structure and assembly of the dystrophin glycoprotein complex.
Nature. 2025 Jan;637(8048):1252-1260. doi: 10.1038/s41586-024-08310-2. Epub 2024 Dec 11.
3
Clinical and genetic interpretation of uncertain DMD missense variants: evidence from mRNA and protein studies.
Orphanet J Rare Dis. 2024 Mar 14;19(1):123. doi: 10.1186/s13023-024-03128-7.
5
The role of the dystrophin glycoprotein complex in muscle cell mechanotransduction.
Commun Biol. 2022 Sep 27;5(1):1022. doi: 10.1038/s42003-022-03980-y.
6
The lncRNA H19 alleviates muscular dystrophy by stabilizing dystrophin.
Nat Cell Biol. 2020 Nov;22(11):1332-1345. doi: 10.1038/s41556-020-00595-5. Epub 2020 Oct 26.
7
EMQN best practice guidelines for genetic testing in dystrophinopathies.
Eur J Hum Genet. 2020 Sep;28(9):1141-1159. doi: 10.1038/s41431-020-0643-7. Epub 2020 May 18.
8
CUGC for Duchenne muscular dystrophy (DMD).
Eur J Hum Genet. 2018 May;26(5):749-757. doi: 10.1038/s41431-017-0013-2. Epub 2018 Jan 12.
9
Beware the laboratory report: discrepancy in variant classification on reproductive carrier screening.
Genet Med. 2018 Mar;20(3):374-375. doi: 10.1038/gim.2017.174. Epub 2017 Oct 26.

本文引用的文献

1
Identification of new dystroglycan complexes in skeletal muscle.
PLoS One. 2013 Aug 8;8(8):e73224. doi: 10.1371/journal.pone.0073224. eCollection 2013.
2
Proteomic analysis reveals new cardiac-specific dystrophin-associated proteins.
PLoS One. 2012;7(8):e43515. doi: 10.1371/journal.pone.0043515. Epub 2012 Aug 24.
3
The carboxy-terminal third of dystrophin enhances actin binding activity.
J Mol Biol. 2012 Feb 24;416(3):414-24. doi: 10.1016/j.jmb.2011.12.040. Epub 2011 Dec 28.
4
Protein quality control in the ER: balancing the ubiquitin checkbook.
Trends Cell Biol. 2012 Jan;22(1):22-32. doi: 10.1016/j.tcb.2011.09.010. Epub 2011 Nov 3.
5
Protein folding and modification in the mammalian endoplasmic reticulum.
Annu Rev Biochem. 2011;80:71-99. doi: 10.1146/annurev-biochem-062209-093836.
6
Missense mutations in dystrophin that trigger muscular dystrophy decrease protein stability and lead to cross-beta aggregates.
Proc Natl Acad Sci U S A. 2010 Aug 24;107(34):15069-74. doi: 10.1073/pnas.1008818107. Epub 2010 Aug 9.
7
Disease-causing missense mutations in actin binding domain 1 of dystrophin induce thermodynamic instability and protein aggregation.
Proc Natl Acad Sci U S A. 2010 May 25;107(21):9632-7. doi: 10.1073/pnas.1001517107. Epub 2010 May 10.
10
Signal integration in the endoplasmic reticulum unfolded protein response.
Nat Rev Mol Cell Biol. 2007 Jul;8(7):519-29. doi: 10.1038/nrm2199.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验