Suppr超能文献

基于人类蛋白质图谱中存储的免疫组织化学染色图像对候选癌症标志物进行优先级排序。

Prioritization of cancer marker candidates based on the immunohistochemistry staining images deposited in the human protein atlas.

机构信息

Institute of Biomedical Informatics, National Yang Ming University, Taipei, Taiwan.

出版信息

PLoS One. 2013 Nov 26;8(11):e81079. doi: 10.1371/journal.pone.0081079. eCollection 2013.

Abstract

Cancer marker discovery is an emerging topic in high-throughput quantitative proteomics. However, the omics technology usually generates a long list of marker candidates that requires a labor-intensive filtering process in order to screen for potentially useful markers. Specifically, various parameters, such as the level of overexpression of the marker in the cancer type of interest, which is related to sensitivity, and the specificity of the marker among cancer groups, are the most critical considerations. Protein expression profiling on the basis of immunohistochemistry (IHC) staining images is a technique commonly used during such filtering procedures. To systematically investigate the protein expression in different cancer versus normal tissues and cell types, the Human Protein Atlas is a most comprehensive resource because it includes millions of high-resolution IHC images with expert-curated annotations. To facilitate the filtering of potential biomarker candidates from large-scale omics datasets, in this study we have proposed a scoring approach for quantifying IHC annotation of paired cancerous/normal tissues and cancerous/normal cell types. We have comprehensively calculated the scores of all the 17219 tested antibodies deposited in the Human Protein Atlas based on their accumulated IHC images and obtained 457110 scores covering 20 different types of cancers. Statistical tests demonstrate the ability of the proposed scoring approach to prioritize cancer-specific proteins. Top 100 potential marker candidates were prioritized for the 20 cancer types with statistical significance. In addition, a model study was carried out of 1482 membrane proteins identified from a quantitative comparison of paired cancerous and adjacent normal tissues from patients with colorectal cancer (CRC). The proposed scoring approach demonstrated successful prioritization and identified four CRC markers, including two of the most widely used, namely CEACAM5 and CEACAM6. These results demonstrate the potential of this scoring approach in terms of cancer marker discovery and development. All the calculated scores are available at http://bal.ym.edu.tw/hpa/.

摘要

癌症标志物的发现是高通量定量蛋白质组学中的一个新兴主题。然而,组学技术通常会产生一长串的标志物候选者,需要进行劳动密集型的过滤过程,以筛选出潜在有用的标志物。具体来说,各种参数,如感兴趣的癌症类型中标志物的过度表达水平,这与敏感性有关,以及标志物在癌症组之间的特异性,是最关键的考虑因素。基于免疫组织化学(IHC)染色图像的蛋白质表达谱分析是这种过滤过程中常用的技术。为了系统地研究不同癌症与正常组织和细胞类型中的蛋白质表达,人类蛋白质图谱是一个最全面的资源,因为它包含了数以百万计的带有专家注释的高分辨率 IHC 图像。为了方便从大规模组学数据集中筛选潜在的生物标志物候选者,在这项研究中,我们提出了一种用于量化配对的癌组织/正常组织和癌组织/正常细胞类型的 IHC 注释的评分方法。我们全面计算了基于其累积 IHC 图像的人类蛋白质图谱中测试的 17219 种抗体的得分,并获得了涵盖 20 种不同癌症的 457110 个得分。统计检验证明了所提出的评分方法优先考虑癌症特异性蛋白的能力。对于具有统计意义的 20 种癌症,优先考虑了 100 个潜在的标记候选者。此外,还对来自结直肠癌(CRC)患者配对的癌组织和相邻正常组织的定量比较中鉴定的 1482 种膜蛋白进行了模型研究。所提出的评分方法成功地进行了优先级排序,并确定了四个 CRC 标志物,包括两个最广泛使用的标志物,即 CEACAM5 和 CEACAM6。这些结果表明了该评分方法在癌症标志物发现和开发方面的潜力。所有计算的得分都可在 http://bal.ym.edu.tw/hpa/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6cea/3841220/ef0597a4ffc4/pone.0081079.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验