Suppr超能文献

通过质膜N-聚糖分析鉴别癌细胞起源和分子亚型

Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling.

作者信息

Hua Serenus, Saunders Mary, Dimapasoc Lauren M, Jeong Seung Hyup, Kim Bum Jin, Kim Suhee, So Minkyung, Lee Kwang-Sik, Kim Jae Han, Lam Kit S, Lebrilla Carlito B, An Hyun Joo

机构信息

Cancer Research Institute, ‡Graduate School of Analytical Science and Technology, and §Department of Food Nutrition, Chungnam National University , Daejeon 305-764, South Korea.

出版信息

J Proteome Res. 2014 Feb 7;13(2):961-8. doi: 10.1021/pr400987f. Epub 2014 Jan 8.

Abstract

In clinical settings, biopsies are routinely used to determine cancer type and grade based on tumor cell morphology, as determined via histochemical or immunohistochemical staining. Unfortunately, in a significant number of cases, traditional biopsy results are either inconclusive or do not provide full subtype differentiation, possibly leading to inefficient or ineffective treatment. Glycomic profiling of the cell membrane offers an alternate route toward cancer diagnosis. In this study, isomer-sensitive nano-LC/MS was used to directly obtain detailed profiles of the different N-glycan structures present on cancer cell membranes. Membrane N-glycans were extracted from cells representing various subtypes of breast, lung, cervical, ovarian, and lymphatic cancer. Chip-based porous graphitized carbon nano-LC/MS was used to separate, identify, and quantify the native N-glycans. Structure-sensitive N-glycan profiling identified hundreds of glycan peaks per cell line, including multiple isomers for most compositions. Hierarchical clusterings based on Pearson correlation coefficients were used to quickly compare and separate each cell line according to originating organ and disease subtype. Based simply on the relative abundances of broad glycan classes (e.g., high mannose, complex/hybrid fucosylated, complex/hybrid sialylated, etc.), most cell lines were readily differentiated. More closely related cell lines were differentiated based on several-fold differences in the abundances of individual glycans. Based on characteristic N-glycan profiles, primary cancer origins and molecular subtypes could be distinguished. These results demonstrate that stark differences in cancer cell membrane glycosylation can be exploited to create an MS-based biopsy, with potential applications toward cancer diagnosis and direction of treatment.

摘要

在临床环境中,活检通常用于根据肿瘤细胞形态确定癌症类型和分级,这是通过组织化学或免疫组织化学染色来确定的。不幸的是,在大量病例中,传统活检结果要么不确定,要么无法提供完整的亚型区分,这可能导致治疗效率低下或无效。细胞膜糖组分析为癌症诊断提供了另一种途径。在本研究中,使用异构体敏感的纳米液相色谱/质谱直接获得癌细胞膜上存在的不同N-聚糖结构的详细图谱。从代表乳腺癌、肺癌、宫颈癌、卵巢癌和淋巴癌各种亚型的细胞中提取膜N-聚糖。基于芯片的多孔石墨化碳纳米液相色谱/质谱用于分离、鉴定和定量天然N-聚糖。结构敏感的N-聚糖分析在每个细胞系中鉴定出数百个聚糖峰,包括大多数组成的多种异构体。基于皮尔逊相关系数的层次聚类用于根据起源器官和疾病亚型快速比较和分离每个细胞系。仅根据宽泛聚糖类别(例如,高甘露糖、复杂/杂合岩藻糖基化、复杂/杂合唾液酸化等)的相对丰度,大多数细胞系很容易区分。关系更密切的细胞系根据个别聚糖丰度的几倍差异来区分。基于特征性的N-聚糖图谱,可以区分原发性癌症起源和分子亚型。这些结果表明,可以利用癌细胞膜糖基化的显著差异来创建基于质谱的活检方法,其在癌症诊断和治疗指导方面具有潜在应用价值。

相似文献

1
Differentiation of cancer cell origin and molecular subtype by plasma membrane N-glycan profiling.
J Proteome Res. 2014 Feb 7;13(2):961-8. doi: 10.1021/pr400987f. Epub 2014 Jan 8.
4
Site-specific protein glycosylation analysis with glycan isomer differentiation.
Anal Bioanal Chem. 2012 May;403(5):1291-302. doi: 10.1007/s00216-011-5109-x. Epub 2011 Jun 8.
5
N-glycan MALDI Imaging Mass Spectrometry on Formalin-Fixed Paraffin-Embedded Tissue Enables the Delineation of Ovarian Cancer Tissues.
Mol Cell Proteomics. 2016 Sep;15(9):3003-16. doi: 10.1074/mcp.M116.059816. Epub 2016 Jul 13.
6
Mass spectrometric profiling reveals association of N-glycan patterns with epithelial ovarian cancer progression.
Tumour Biol. 2017 Jul;39(7):1010428317716249. doi: 10.1177/1010428317716249.
8
Resolving Isomeric Structures of Native Glycans by Nanoflow Porous Graphitized Carbon Chromatography-Mass Spectrometry.
Anal Chem. 2020 Oct 20;92(20):14038-14046. doi: 10.1021/acs.analchem.0c02951. Epub 2020 Oct 6.

引用本文的文献

2
Chromatograms and Mass Spectra of High-Mannose and Paucimannose -Glycans for Rapid Isomeric Identifications.
J Proteome Res. 2024 Mar 1;23(3):939-955. doi: 10.1021/acs.jproteome.3c00640. Epub 2024 Feb 16.
3
Heterogeneity of glycan biomarker clusters as an indicator of recurrence in pancreatic cancer.
Front Oncol. 2023 Apr 12;13:1135405. doi: 10.3389/fonc.2023.1135405. eCollection 2023.
5
Heterogeneity of Glycan Biomarker Clusters as an Indicator of Recurrence in Pancreatic Cancer.
bioRxiv. 2023 Jan 6:2023.01.05.522607. doi: 10.1101/2023.01.05.522607.
7
Desalting Paper Spay Mass Spectrometry (DPS-MS) for Rapid Detection of Glycans and Glycoconjugates.
Int J Mass Spectrom. 2021 Nov;469. doi: 10.1016/j.ijms.2021.116688. Epub 2021 Aug 28.
9
Integrated - and -Glycomics of Acute Myeloid Leukemia (AML) Cell Lines.
Cells. 2021 Nov 6;10(11):3058. doi: 10.3390/cells10113058.
10
Glycosylation in Cervical Cancer: New Insights and Clinical Implications.
Front Oncol. 2021 Aug 16;11:706862. doi: 10.3389/fonc.2021.706862. eCollection 2021.

本文引用的文献

5
Glycoscience aids in biomarker discovery.
BMB Rep. 2012 Jun;45(6):323-30. doi: 10.5483/bmbrep.2012.45.6.132.
7
Application of nano-LC-based glycomics towards biomarker discovery.
Bioanalysis. 2011 Nov;3(22):2573-85. doi: 10.4155/bio.11.263.
9
Comprehensive native glycan profiling with isomer separation and quantitation for the discovery of cancer biomarkers.
Analyst. 2011 Sep 21;136(18):3663-71. doi: 10.1039/c1an15093f. Epub 2011 Jul 21.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验