Suppr超能文献

用于识别需要护理协调的患者的风险分层方法。

Risk-stratification methods for identifying patients for care coordination.

作者信息

Haas Lindsey R, Takahashi Paul Y, Shah Nilay D, Stroebel Robert J, Bernard Matthew E, Finnie Dawn M, Naessens James M

机构信息

Health Care Policy and Research, Mayo Clinic, 200 First St Southwest, Rochester, MN 55905. E-mail:

出版信息

Am J Manag Care. 2013 Sep;19(9):725-32.

Abstract

BACKGROUND

Care coordination is a key component of the patient-centered medical home. However, the mechanism for identifying primary care patients who may benefit the most from this model of care is unclear.

OBJECTIVES

To evaluate the performance of several risk-adjustment/stratification instruments in predicting healthcare utilization.

STUDY DESIGN

Retrospective cohort analysis.

METHODS

All adults empaneled in 2009 and 2010 (n = 83,187) in a primary care practice were studied. We evaluated 6 models: Adjusted Clinical Groups (ACGs), Hierarchical Condition Categories (HCCs), Elder Risk Assessment, Chronic Comorbidity Count, Charlson Comorbidity Index, and Minnesota Health Care Home Tiering. A seventh model combining Minnesota Tiering with ERA score was also assessed. Logistic regression models using demographic characteristics and diagnoses from 2009 were used to predict healthcare utilization and costs for 2010 with binary outcomes (emergency department [ED] visits, hospitalizations, 30-day readmissions, and highcost users in the top 10%), using the C statistic and goodness of fit among the top decile.

RESULTS

The ACG model outperformed the others in predicting hospitalizations with a C statistic range of 0.67 (CMS-HCC) to 0.73. In predicting ED visits, the C statistic ranged from 0.58 (CMSHCC) to 0.67 (ACG). When predicting the top 10% highest cost users, the performance of the ACG model was good (area under the curve = 0.81) and superior to the others.

CONCLUSIONS

Although ACG models generally performed better in predicting utilization, use of any of these models will help practices implement care coordination more efficiently.

摘要

背景

护理协调是以患者为中心的医疗之家的关键组成部分。然而,确定可能从这种护理模式中获益最大的初级保健患者的机制尚不清楚。

目的

评估几种风险调整/分层工具在预测医疗保健利用率方面的表现。

研究设计

回顾性队列分析。

方法

对2009年和2010年纳入初级保健实践的所有成年人(n = 83,187)进行研究。我们评估了6种模型:调整后的临床分组(ACG)、分层病情分类(HCC)、老年人风险评估、慢性合并症计数、查尔森合并症指数和明尼苏达医疗之家分层。还评估了将明尼苏达分层与ERA评分相结合的第七种模型。使用2009年的人口统计学特征和诊断的逻辑回归模型,以二元结局(急诊就诊、住院、30天再入院以及前10%的高成本使用者)预测2010年的医疗保健利用率和成本,使用C统计量和十分位数中最佳拟合度。

结果

ACG模型在预测住院方面优于其他模型,C统计量范围为0.67(CMS - HCC)至0.73。在预测急诊就诊方面,C统计量范围为0.58(CMS - HCC)至0.67(ACG)。在预测前10%的高成本使用者时,ACG模型表现良好(曲线下面积 = 0.81)且优于其他模型。

结论

虽然ACG模型在预测利用率方面通常表现更好,但使用这些模型中的任何一种都将有助于医疗机构更有效地实施护理协调。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验