Suppr超能文献

当前风险调整和合并症指数在预测关节置换术后急性后期利用率和医院再入院方面的表现不佳:对关节置换模型综合护理的启示。

Current Risk Adjustment and Comorbidity Index Underperformance in Predicting Post-Acute Utilization and Hospital Readmissions After Joint Replacements: Implications for Comprehensive Care for Joint Replacement Model.

作者信息

Kumar Amit, Karmarkar Amol, Downer Brian, Vashist Amit, Adhikari Deepak, Al Snih Soham, Ottenbacher Kenneth

机构信息

Center for Gerontology and Health Care Research, School of Public Health, Brown University, Providence, Rhode Island.

University of Texas Medical Branch, Galveston.

出版信息

Arthritis Care Res (Hoboken). 2017 Nov;69(11):1668-1675. doi: 10.1002/acr.23195. Epub 2017 Oct 9.

Abstract

OBJECTIVE

To compare the performances of 3 comorbidity indices, the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, and the Centers for Medicare & Medicaid Services (CMS) risk adjustment model, Hierarchical Condition Category (HCC), in predicting post-acute discharge settings and hospital readmission for patients after joint replacement.

METHODS

A retrospective study of Medicare beneficiaries with total knee replacement (TKR) or total hip replacement (THR) discharged from hospitals in 2009-2011 (n = 607,349) was performed. Study outcomes were post-acute discharge setting and unplanned 30-, 60-, and 90-day hospital readmissions. Logistic regression models were built to compare the performance of the 3 comorbidity indices using C statistics. The base model included patient demographics and hospital use. Subsequent models included 1 of the 3 comorbidity indices. Additional multivariable logistic regression models were built to identify individual comorbid conditions associated with high risk of hospital readmissions.

RESULTS

The 30-, 60-, and 90-day unplanned hospital readmission rates were 5.3%, 7.2%, and 8.5%, respectively. Patients were most frequently discharged to home health (46.3%), followed by skilled nursing facility (40.9%) and inpatient rehabilitation facility (12.7%). The C statistics for the base model in predicting post-acute discharge setting and 30-, 60-, and 90-day readmission in TKR and THR were between 0.63 and 0.67. Adding the Charlson Comorbidity Index, the Elixhauser Comorbidity Index, or HCC increased the C statistic minimally from the base model for predicting both discharge settings and hospital readmission. The health conditions most frequently associated with hospital readmission were diabetes mellitus, pulmonary disease, arrhythmias, and heart disease.

CONCLUSION

The comorbidity indices and CMS-HCC demonstrated weak discriminatory ability to predict post-acute discharge settings and hospital readmission following joint replacement.

摘要

目的

比较3种合并症指数,即查尔森合并症指数、埃利克斯豪泽合并症指数以及医疗保险和医疗补助服务中心(CMS)风险调整模型——分层疾病分类(HCC),在预测关节置换术后患者急性后期出院安置情况和医院再入院方面的表现。

方法

对2009 - 2011年从医院出院的接受全膝关节置换术(TKR)或全髋关节置换术(THR)的医疗保险受益人进行回顾性研究(n = 607,349)。研究结局为急性后期出院安置情况以及非计划的30天、60天和90天医院再入院情况。构建逻辑回归模型,使用C统计量比较3种合并症指数的表现。基础模型包括患者人口统计学特征和医院使用情况。后续模型纳入3种合并症指数中的1种。构建额外的多变量逻辑回归模型,以识别与医院再入院高风险相关的个体合并症情况。

结果

3个非计划的30天、60天和90天医院再入院率分别为5.3%、7.2%和8.5%。患者最常出院至家庭健康护理机构(46.3%),其次是专业护理机构(40.9%)和住院康复机构(12.7%)。基础模型在预测TKR和THR术后急性后期出院安置情况以及30天、60天和90天再入院方面的C统计量在0.63至0.67之间。添加查尔森合并症指数、埃利克斯豪泽合并症指数或HCC后,在预测出院安置情况和医院再入院方面,相较于基础模型,C统计量的提升微乎其微。与医院再入院最常相关的健康状况为糖尿病、肺部疾病、心律失常和心脏病。

结论

合并症指数和CMS - HCC在预测关节置换术后急性后期出院安置情况和医院再入院方面的鉴别能力较弱。

相似文献

2
Comorbidity Indices Versus Function as Potential Predictors of 30-Day Readmission in Older Patients Following Postacute Rehabilitation.
J Gerontol A Biol Sci Med Sci. 2017 Feb;72(2):223-228. doi: 10.1093/gerona/glw148. Epub 2016 Aug 4.
3
4
Functional Status Outperforms Comorbidities as a Predictor of 30-Day Acute Care Readmissions in the Inpatient Rehabilitation Population.
J Am Med Dir Assoc. 2016 Oct 1;17(10):921-6. doi: 10.1016/j.jamda.2016.06.003. Epub 2016 Jul 14.
8
Comparison of Comorbidity Scores in Predicting Surgical Outcomes.
Med Care. 2016 Feb;54(2):180-7. doi: 10.1097/MLR.0000000000000465.
9
Comparing Comorbidity Indices to Predict Post-Acute Rehabilitation Outcomes in Older Adults.
Am J Phys Med Rehabil. 2016 Dec;95(12):889-898. doi: 10.1097/PHM.0000000000000527.

引用本文的文献

3
Rates, Reasons, and Independent Predictors of Readmissions in Portal Venous Thrombosis Hospitalizations in the USA.
Gastroenterology Res. 2022 Oct;15(5):253-262. doi: 10.14740/gr1561. Epub 2022 Oct 19.
7
The Update on Instruments Used for Evaluation of Comorbidities in Total Hip Arthroplasty.
Indian J Orthop. 2021 Jan 26;55(4):823-838. doi: 10.1007/s43465-021-00357-x. eCollection 2021 Aug.
8
Discharge Disposition Following Hematopoietic Cell Transplantation: Predicting the Need for Rehabilitation and Association with Survival.
Transplant Cell Ther. 2021 Apr;27(4):337.e1-337.e7. doi: 10.1016/j.jtct.2020.11.015. Epub 2020 Dec 17.
10
Preoperative Frailty Assessment, Operative Severity Score, and Early Postoperative Loss of Independence in Surgical Patients Age 65 Years or Older.
J Am Coll Surg. 2021 Apr;232(4):387-395. doi: 10.1016/j.jamcollsurg.2020.11.026. Epub 2020 Dec 29.

本文引用的文献

1
Medicare's New Bundled Payment For Joint Replacement May Penalize Hospitals That Treat Medically Complex Patients.
Health Aff (Millwood). 2016 Sep 1;35(9):1651-7. doi: 10.1377/hlthaff.2016.0263.
2
Comorbidity Indices Versus Function as Potential Predictors of 30-Day Readmission in Older Patients Following Postacute Rehabilitation.
J Gerontol A Biol Sci Med Sci. 2017 Feb;72(2):223-228. doi: 10.1093/gerona/glw148. Epub 2016 Aug 4.
3
Comparing Comorbidity Indices to Predict Post-Acute Rehabilitation Outcomes in Older Adults.
Am J Phys Med Rehabil. 2016 Dec;95(12):889-898. doi: 10.1097/PHM.0000000000000527.
4
Functional Status Predicts Acute Care Readmissions from Inpatient Rehabilitation in the Stroke Population.
PLoS One. 2015 Nov 23;10(11):e0142180. doi: 10.1371/journal.pone.0142180. eCollection 2015.
5
Comparison of Comorbidity Scores in Predicting Surgical Outcomes.
Med Care. 2016 Feb;54(2):180-7. doi: 10.1097/MLR.0000000000000465.
7
The Effect of BMI on 30 Day Outcomes Following Total Joint Arthroplasty.
J Arthroplasty. 2015 Jul;30(7):1113-7. doi: 10.1016/j.arth.2015.01.049. Epub 2015 Feb 7.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验