Suppr超能文献

快速棘突中间神经元的同步激发对于维持纹状体的直接和间接途径神经元之间的平衡激发至关重要。

Synchronized firing of fast-spiking interneurons is critical to maintain balanced firing between direct and indirect pathway neurons of the striatum.

机构信息

The Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia.

出版信息

J Neurophysiol. 2014 Feb;111(4):836-48. doi: 10.1152/jn.00382.2013. Epub 2013 Dec 4.

Abstract

The inhibitory circuits of the striatum are known to be critical for motor function, yet their contributions to Parkinsonian motor deficits are not clear. Altered firing in the globus pallidus suggests that striatal medium spiny neurons (MSN) of the direct (D1 MSN) and indirect pathway (D2 MSN) are imbalanced during dopamine depletion. Both MSN classes receive inhibitory input from each other and from inhibitory interneurons within the striatum, specifically the fast-spiking interneurons (FSI). To investigate the role of inhibition in maintaining striatal balance, we developed a biologically-realistic striatal network model consisting of multicompartmental neuron models: 500 D1 MSNs, 500 D2 MSNs and 49 FSIs. The D1 and D2 MSN models are differentiated based on published experiments of individual channel modulations by dopamine, with D2 MSNs being more excitable than D1 MSNs. Despite this difference in response to current injection, in the network D1 and D2 MSNs fire at similar frequencies in response to excitatory synaptic input. Simulations further reveal that inhibition from FSIs connected by gap junctions is critical to produce balanced firing. Although gap junctions produce only a small increase in synchronization between FSIs, removing these connections resulted in significant firing differences between D1 and D2 MSNs, and balanced firing was restored by providing synchronized cortical input to the FSIs. Together these findings suggest that desynchronization of FSI firing is sufficient to alter balanced firing between D1 and D2 MSNs.

摘要

纹状体的抑制性回路对于运动功能至关重要,但它们对帕金森病运动缺陷的贡献尚不清楚。苍白球中的放电改变表明,在多巴胺耗竭期间,直接(D1 MSN)和间接通路(D2 MSN)的纹状体中间神经元(MSN)失衡。这两种 MSN 类群都受到来自彼此和纹状体中抑制性中间神经元(尤其是快速放电中间神经元(FSI))的抑制性输入。为了研究抑制在维持纹状体平衡中的作用,我们开发了一个基于生物现实的纹状体网络模型,该模型由多室神经元模型组成:500 个 D1 MSN、500 个 D2 MSN 和 49 个 FSI。D1 和 D2 MSN 模型基于多巴胺对个体通道调制的已发表实验进行区分,D2 MSN 比 D1 MSN 更具兴奋性。尽管对电流注入的反应存在这种差异,但在网络中,D1 和 D2 MSN 对兴奋性突触输入的反应以相似的频率放电。模拟进一步表明,由缝隙连接连接的 FSI 的抑制对于产生平衡的放电至关重要。尽管缝隙连接仅使 FSI 之间的同步性略有增加,但消除这些连接会导致 D1 和 D2 MSN 之间的放电差异显著,并且通过向 FSI 提供同步皮质输入来恢复平衡放电。这些发现表明,FSI 放电的去同步足以改变 D1 和 D2 MSN 之间的平衡放电。

相似文献

3
Dopaminergic treatment weakens medium spiny neuron collateral inhibition in the parkinsonian striatum.
J Neurophysiol. 2017 Mar 1;117(3):987-999. doi: 10.1152/jn.00683.2016. Epub 2016 Dec 7.
5
Reconstructing the three-dimensional GABAergic microcircuit of the striatum.
PLoS Comput Biol. 2010 Nov 24;6(11):e1001011. doi: 10.1371/journal.pcbi.1001011.
7
Existence and control of Go/No-Go decision transition threshold in the striatum.
PLoS Comput Biol. 2015 Apr 24;11(4):e1004233. doi: 10.1371/journal.pcbi.1004233. eCollection 2015 Apr.
8
Selective activation of striatal fast-spiking interneurons during choice execution.
Neuron. 2010 Aug 12;67(3):466-79. doi: 10.1016/j.neuron.2010.06.034.
10
Modeling influences of dopamine on synchronization behavior of striatum.
Network. 2017;28(1):28-52. doi: 10.1080/0954898X.2017.1378824. Epub 2017 Oct 6.

引用本文的文献

1
Simulating combined monoaminergic depletions in a PD animal model through a bio-constrained differential equations system.
Front Comput Neurosci. 2024 Aug 23;18:1386841. doi: 10.3389/fncom.2024.1386841. eCollection 2024.
2
Striatal parvalbumin interneurons are activated in a mouse model of cerebellar dystonia.
Dis Model Mech. 2024 May 1;17(5). doi: 10.1242/dmm.050338. Epub 2024 May 14.
3
Involvement of brain cell phenotypes in stress-vulnerability and resilience.
Front Neurosci. 2023 Jul 5;17:1175514. doi: 10.3389/fnins.2023.1175514. eCollection 2023.
4
5
Cortical control of striatal fast-spiking interneuron synchrony.
J Physiol. 2022 May;600(9):2189-2202. doi: 10.1113/JP282850. Epub 2022 Apr 11.
6
Bayesian Mapping of the Striatal Microcircuit Reveals Robust Asymmetries in the Probabilities and Distances of Connections.
J Neurosci. 2022 Feb 23;42(8):1417-1435. doi: 10.1523/JNEUROSCI.1487-21.2021. Epub 2021 Dec 10.
7
Neuronal population models reveal specific linear conductance controllers sufficient to rescue preclinical disease phenotypes.
iScience. 2021 Oct 14;24(11):103279. doi: 10.1016/j.isci.2021.103279. eCollection 2021 Nov 19.
8
Modeling Neurotransmission: Computational Tools to Investigate Neurological Disorders.
Int J Mol Sci. 2021 Apr 27;22(9):4565. doi: 10.3390/ijms22094565.
9
The microcircuits of striatum in silico.
Proc Natl Acad Sci U S A. 2020 Apr 28;117(17):9554-9565. doi: 10.1073/pnas.2000671117. Epub 2020 Apr 22.
10
Basal ganglia role in learning rewarded actions and executing previously learned choices: Healthy and diseased states.
PLoS One. 2020 Feb 10;15(2):e0228081. doi: 10.1371/journal.pone.0228081. eCollection 2020.

本文引用的文献

1
Concurrent activation of striatal direct and indirect pathways during action initiation.
Nature. 2013 Feb 14;494(7436):238-42. doi: 10.1038/nature11846. Epub 2013 Jan 23.
2
Strain-specific regulation of striatal phenotype in Drd2-eGFP BAC transgenic mice.
J Neurosci. 2012 Jul 4;32(27):9124-32. doi: 10.1523/JNEUROSCI.0229-12.2012.
3
Dichotomous organization of the external globus pallidus.
Neuron. 2012 Jun 21;74(6):1075-86. doi: 10.1016/j.neuron.2012.04.027.
4
The effects of NMDA subunit composition on calcium influx and spike timing-dependent plasticity in striatal medium spiny neurons.
PLoS Comput Biol. 2012;8(4):e1002493. doi: 10.1371/journal.pcbi.1002493. Epub 2012 Apr 19.
5
Significance of input correlations in striatal function.
PLoS Comput Biol. 2011 Nov;7(11):e1002254. doi: 10.1371/journal.pcbi.1002254. Epub 2011 Nov 17.
6
Selective inhibition of striatal fast-spiking interneurons causes dyskinesias.
J Neurosci. 2011 Nov 2;31(44):15727-31. doi: 10.1523/JNEUROSCI.3875-11.2011.
7
Rapid target-specific remodeling of fast-spiking inhibitory circuits after loss of dopamine.
Neuron. 2011 Sep 8;71(5):858-68. doi: 10.1016/j.neuron.2011.06.035.
8
Dopaminergic modulation of corticostriatal responses in medium spiny projection neurons from direct and indirect pathways.
Front Syst Neurosci. 2011 Mar 29;5:15. doi: 10.3389/fnsys.2011.00015. eCollection 2011.
9
Dendritic sodium channels regulate network integration in globus pallidus neurons: a modeling study.
J Neurosci. 2010 Nov 10;30(45):15146-59. doi: 10.1523/JNEUROSCI.2662-10.2010.
10
Regulation of parkinsonian motor behaviours by optogenetic control of basal ganglia circuitry.
Nature. 2010 Jul 29;466(7306):622-6. doi: 10.1038/nature09159. Epub 2010 Jul 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验