Department of Cardiovascular Medicine (S.K., T.M., S.N., J.K., Y.N., S.E., K. Sunagawa) and Department of Cardiovascular Research, Development, and Translational Medicine (K. Sato, K.N., K.E.), Kyushu University Graduate School of Medical Sciences, Fukuoka, Japan.
Circulation. 2014 Feb 25;129(8):896-906. doi: 10.1161/CIRCULATIONAHA.113.002870. Epub 2013 Dec 4.
Preventing atherosclerotic plaque destabilization and rupture is the most reasonable therapeutic strategy for acute myocardial infarction. Therefore, we tested the hypotheses that (1) inflammatory monocytes play a causative role in plaque destabilization and rupture and (2) the nanoparticle-mediated delivery of pitavastatin into circulating inflammatory monocytes inhibits plaque destabilization and rupture.
We used a model of plaque destabilization and rupture in the brachiocephalic arteries of apolipoprotein E-deficient (ApoE(-/-)) mice fed a high-fat diet and infused with angiotensin II. The adoptive transfer of CCR2(+/+)Ly-6C(high) inflammatory macrophages, but not CCR2(-/-) leukocytes, accelerated plaque destabilization associated with increased serum monocyte chemoattractant protein-1 (MCP-1), monocyte-colony stimulating factor, and matrix metalloproteinase-9. We prepared poly(lactic-co-glycolic) acid nanoparticles that were incorporated by Ly-6G(-)CD11b(+) monocytes and delivered into atherosclerotic plaques after intravenous administration. Intravenous treatment with pitavastatin-incorporated nanoparticles, but not with control nanoparticles or pitavastatin alone, inhibited plaque destabilization and rupture associated with decreased monocyte infiltration and gelatinase activity in the plaque. Pitavastatin-incorporated nanoparticles inhibited MCP-1-induced monocyte chemotaxis and the secretion of MCP-1 and matrix metalloproteinase-9 from cultured macrophages. Furthermore, the nanoparticle-mediated anti-MCP-1 gene therapy reduced the incidence of plaque destabilization and rupture.
The recruitment of inflammatory monocytes is critical in the pathogenesis of plaque destabilization and rupture, and nanoparticle-mediated pitavastatin delivery is a promising therapeutic strategy to inhibit plaque destabilization and rupture by regulating MCP-1/CCR2-dependent monocyte recruitment in this model.
防止动脉粥样硬化斑块不稳定和破裂是急性心肌梗死最合理的治疗策略。因此,我们验证了以下假设:(1)炎性单核细胞在斑块不稳定和破裂中起因果作用;(2)载脂蛋白 E 缺陷(ApoE(-/-))小鼠高脂饮食喂养并输注血管紧张素 II 后,通过纳米颗粒将匹伐他汀递送至循环炎症性单核细胞中可抑制斑块不稳定和破裂。
我们使用载脂蛋白 E 缺陷(ApoE(-/-))小鼠肱动脉斑块不稳定和破裂模型,并用高脂肪饮食喂养并输注血管紧张素 II。CCR2(+/+)Ly-6C(high)炎性巨噬细胞的过继转移,但不是 CCR2(-/-)白细胞,加速了与血清单核细胞趋化蛋白 1(MCP-1)、单核细胞集落刺激因子和基质金属蛋白酶-9 增加相关的斑块不稳定。我们制备了聚(乳酸-共-乙醇酸)纳米颗粒,这些颗粒被 Ly-6G(-)CD11b(+)单核细胞摄取,并在静脉给药后递送至动脉粥样硬化斑块中。静脉给予载有匹伐他汀的纳米颗粒治疗,但不是给予对照纳米颗粒或单独给予匹伐他汀,可抑制斑块不稳定和破裂,同时减少斑块内单核细胞浸润和明胶酶活性。载有匹伐他汀的纳米颗粒可抑制 MCP-1 诱导的单核细胞趋化作用以及培养的巨噬细胞中 MCP-1 和基质金属蛋白酶-9 的分泌。此外,纳米颗粒介导的抗 MCP-1 基因治疗可降低斑块不稳定和破裂的发生率。
炎性单核细胞的募集在斑块不稳定和破裂的发病机制中至关重要,纳米颗粒介导的匹伐他汀递送至通过调节该模型中 MCP-1/CCR2 依赖性单核细胞募集来抑制斑块不稳定和破裂,是一种很有前途的治疗策略。