Suppr超能文献

恢复瘫痪性脊髓损伤后的自主运动控制。

Restoring voluntary control of locomotion after paralyzing spinal cord injury.

机构信息

Neurology Department, University of Zurich, CH-8008 Zurich, Switzerland.

出版信息

Science. 2012 Jun 1;336(6085):1182-5. doi: 10.1126/science.1217416.

Abstract

Half of human spinal cord injuries lead to chronic paralysis. Here, we introduce an electrochemical neuroprosthesis and a robotic postural interface designed to encourage supraspinally mediated movements in rats with paralyzing lesions. Despite the interruption of direct supraspinal pathways, the cortex regained the capacity to transform contextual information into task-specific commands to execute refined locomotion. This recovery relied on the extensive remodeling of cortical projections, including the formation of brainstem and intraspinal relays that restored qualitative control over electrochemically enabled lumbosacral circuitries. Automated treadmill-restricted training, which did not engage cortical neurons, failed to promote translesional plasticity and recovery. By encouraging active participation under functional states, our training paradigm triggered a cortex-dependent recovery that may improve function after similar injuries in humans.

摘要

一半的人类脊髓损伤会导致慢性瘫痪。在这里,我们介绍了一种电化学神经假体和一种机器人姿势接口,旨在鼓励瘫痪大鼠的皮质上介导运动。尽管直接皮质上通路中断,但皮质恢复了将上下文信息转化为特定任务命令以执行精细运动的能力。这种恢复依赖于皮质投射的广泛重塑,包括脑桥和脊髓内中继的形成,这些中继恢复了对电化学启用的腰骶电路的定性控制。自动化跑步机限制训练,不涉及皮质神经元,未能促进跨损伤可塑性和恢复。通过在功能状态下鼓励主动参与,我们的训练方案引发了一种依赖于皮质的恢复,这可能会改善类似人类损伤后的功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验