Hazrati Marangalou J, Eckstein F, Kuhn V, Ito K, Cataldi M, Taddei F, van Rietbergen B
Orthopaedic Biomechanics, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
Osteoporos Int. 2014 Apr;25(4):1285-96. doi: 10.1007/s00198-013-2591-3. Epub 2013 Dec 4.
Whole vertebrae areal and volumetric bone mineral density (BMD) measurements are not ideal predictors of vertebral fractures. We introduce a technique which enables quantification of bone microstructural parameters at precisely defined anatomical locations. Results show that local assessment of bone volume fraction at the optimal location can substantially improve the prediction of vertebral strength.
Whole vertebrae areal and volumetric BMD measurements are not ideal predictors of vertebral osteoporotic fractures. Recent studies have shown that sampling bone microstructural parameters in smaller regions may permit better predictions. In such studies, however, the sampling location is described only in general anatomical terms. Here, we introduce a technique that enables the quantification of bone volume fraction and microstructural parameters at precisely defined anatomical locations. Specific goals of this study were to investigate at what anatomical location within the vertebrae local bone volume fraction best predicts vertebral-body strength, whether this prediction can be improved by adding microstructural parameters and to explore if this approach could better predict vertebral-body strength than whole bone volume fraction and finite element (FE) analyses.
Eighteen T12 vertebrae were scanned in a micro-computed tomography (CT) system and FE meshes were made using a mesh-morphing tool. For each element, bone microstructural parameters were measured and correlated with vertebral compressive strength as measured experimentally. Whole bone volume fraction and FE-predicted vertebral strength were also compared to the experimental measurements.
A significant association between local bone volume fraction measured at a specific central region and vertebral-body strength was found that could explain up to 90% of the variation. When including all microstructural parameters in the regression, the predictive value of local measurements could be increased to 98%. Whole bone volume fraction could explain only 64% and FE analyses 76% of the variation in bone strength.
A local assessment of volume fraction at the optimal location can substantially improve the prediction of bone strength. Local assessment of other microstructural parameters may further improve this prediction but is not clinically feasible using current technology.
对整个椎体进行面积和体积骨矿物质密度(BMD)测量并非椎体骨折的理想预测指标。我们介绍了一种技术,该技术能够在精确界定的解剖位置对骨微结构参数进行量化。结果表明,在最佳位置对骨体积分数进行局部评估可显著改善对椎体强度的预测。
对整个椎体进行面积和体积BMD测量并非椎体骨质疏松性骨折的理想预测指标。近期研究表明,在较小区域内对骨微结构参数进行采样可能会实现更好的预测。然而,在这类研究中,采样位置仅用大体解剖学术语进行描述。在此,我们介绍一种技术,该技术能够在精确界定的解剖位置对骨体积分数和微结构参数进行量化。本研究的具体目标是探究在椎体的哪个解剖位置局部骨体积分数能最佳预测椎体强度,通过添加微结构参数这种预测是否能得到改善,以及探讨这种方法是否比全骨体积分数和有限元(FE)分析能更好地预测椎体强度。
在微型计算机断层扫描(CT)系统中对18个T12椎体进行扫描,并使用网格变形工具制作FE网格。对每个单元测量骨微结构参数,并将其与实验测量得到的椎体抗压强度进行关联。还将全骨体积分数和FE预测的椎体强度与实验测量值进行比较。
发现在特定中央区域测量的局部骨体积分数与椎体强度之间存在显著关联,这一关联能够解释高达90%的变异性。当在回归分析中纳入所有微结构参数时,局部测量的预测价值可提高到98%。全骨体积分数仅能解释骨强度变异性的64%,FE分析能解释76%。
在最佳位置对体积分数进行局部评估可显著改善对骨强度的预测。对其他微结构参数进行局部评估可能会进一步改善这种预测,但使用当前技术在临床上不可行。