Suppr超能文献

通过动态患者特征增强系统医学超越基因型数据:拥有信息并加以利用。

Enhancing systems medicine beyond genotype data by dynamic patient signatures: having information and using it too.

机构信息

Computational Biology and Machine Learning Laboratory, Faculty of Medicine, Health and Life Sciences, Center for Cancer Research and Cell Biology, School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast Belfast, UK.

出版信息

Front Genet. 2013 Nov 19;4:241. doi: 10.3389/fgene.2013.00241. eCollection 2013.

Abstract

In order to establish systems medicine, based on the results and insights from basic biological research applicable for a medical and a clinical patient care, it is essential to measure patient-based data that represent the molecular and cellular state of the patient's pathology. In this paper, we discuss potential limitations of the sole usage of static genotype data, e.g., from next-generation sequencing, for translational research. The hypothesis advocated in this paper is that dynOmics data, i.e., high-throughput data that are capable of capturing dynamic aspects of the activity of samples from patients, are important for enabling personalized medicine by complementing genotype data.

摘要

为了建立基于基础生物学研究成果和见解的系统医学,这些研究成果和见解可应用于医疗和临床患者护理,因此必须测量基于患者的代表患者病理学的分子和细胞状态的数据。在本文中,我们讨论了仅使用静态基因型数据(例如来自下一代测序的基因型数据)进行转化研究的潜在局限性。本文提倡的假设是,dynOmics 数据,即能够捕获患者样本活性的动态方面的高通量数据,通过补充基因型数据对于实现个性化医疗非常重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/24b8/3832803/341652119faa/fgene-04-00241-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验