Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
PLoS One. 2013 Nov 28;8(11):e82045. doi: 10.1371/journal.pone.0082045. eCollection 2013.
The protein kinase C (PKC) signaling, a major regulator of chondrocytic differentiation, has been also implicated in pathological extracellular matrix remodeling, and here we investigate the mechanism of PKCε-dependent regulation of the chondrocytic phenotype in human nucleus pulposus (NP) cells derived from herniated disks. NP cells from each donor were successfully propagated for 25+ culture passages, with remarkable tolerance to repeated freeze-and-thaw cycles throughout long-term culturing. More specifically, after an initial downregulation of COL2A1, a stable chondrocytic phenotype was attested by the levels of mRNA expression for aggrecan, biglycan, fibromodulin, and lumican, while higher expression of SOX-trio and Patched-1 witnessed further differentiation potential. NP cells in culture also exhibited a stable molecular profile of PKC isoforms: throughout patient samples and passages, mRNAs for PKC α, δ, ε, ζ, η, ι, and µ were steadily detected, whereas β, γ, and θ were not. Focusing on the signalling of PKCε, an isoform that may confer protection against degeneration, we found that activation with the PKCε-specific activator small peptide ψεRACK led sequentially to a prolonged activation of ERK1/2, increased abundance of the early gene products ATF, CREB1, and Fos with concurrent silencing of transcription for Ki67, and increases in mRNA expression for aggrecan. More importantly, ψεRACK induced upregulation of hsa-miR-377 expression, coupled to decreases in ADAMTS5 and cleaved aggrecan. Therefore, PKCε activation in late passage NP cells may represent a molecular basis for aggrecan availability, as part of an PKCε/ERK/CREB/AP-1-dependent transcriptional program that includes upregulation of both chondrogenic genes and microRNAs. Moreover, this pathway should be considered as a target for understanding the molecular mechanism of IVD degeneration and for therapeutic restoration of degenerated disks.
蛋白激酶 C(PKC)信号转导是软骨细胞分化的主要调节因子,也参与病理性细胞外基质重塑,在此我们研究 PKCε 依赖性调节人椎间盘脱出来源的髓核细胞软骨细胞表型的机制。从每个供体分离的 NP 细胞成功传代培养 25 代以上,在长期培养过程中对反复冻融循环具有显著的耐受性。更具体地说,在 COL2A1 最初下调后,通过聚集蛋白聚糖、大蛋白聚糖、纤维连接蛋白和亮蛋白聚糖的 mRNA 表达水平证实了稳定的软骨细胞表型,而 SOX-trio 和 patched-1 的高表达见证了进一步的分化潜能。培养中的 NP 细胞也表现出稳定的 PKC 同工型分子谱:在整个患者样本和传代过程中,稳定地检测到 PKCα、δ、ε、ζ、η、ι 和μ的 mRNA,而β、γ和θ则没有。关注可能对退变具有保护作用的 PKCε 信号,我们发现使用 PKCε 特异性激活肽 ψεRACK 激活可依次导致 ERK1/2 的延长激活,早期基因产物 ATF、CREB1 和 Fos 的丰度增加,同时 Ki67 的转录沉默,以及聚集蛋白聚糖的 mRNA 表达增加。更重要的是,ψεRACK 诱导 hsa-miR-377 的表达上调,同时降低 ADAMTS5 和切割的聚集蛋白聚糖。因此,晚期传代 NP 细胞中 PKCε 的激活可能是聚集蛋白聚糖可用性的分子基础,作为 PKCε/ERK/CREB/AP-1 依赖性转录程序的一部分,该程序包括软骨形成基因和 microRNA 的上调。此外,该途径应被视为理解 IVD 退变的分子机制和治疗退变椎间盘的靶点。