Suppr超能文献

激发态动力学可用于探测黄素蛋白催化的 H-隧穿反应的供体-受体距离。

Excited state dynamics can be used to probe donor-acceptor distances for H-tunneling reactions catalyzed by flavoproteins.

机构信息

Manchester Institute of Biotechnology and Photon Science Institute, Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.

出版信息

Biophys J. 2013 Dec 3;105(11):2549-58. doi: 10.1016/j.bpj.2013.10.015.

Abstract

In enzyme systems where fast motions are thought to contribute to H-transfer efficiency, the distance between hydrogen donor and acceptor is a very important factor. Sub-ångstrom changes in donor-acceptor distance can have a large effect on the rate of reaction, so a sensitive probe of these changes is a vital tool in our understanding of enzyme function. In this study we use ultrafast transient absorption spectroscopy to investigate the photoinduced electron transfer rates, which are also very sensitive to small changes in distance, between coenzyme analog, NAD(P)H4, and the isoalloxazine center in the model flavoenzymes morphinone reductase (wild-type and selected variants) and pentaerythritol tetranitrate reductase (wild-type). It is shown that upon addition of coenzyme to the protein the rate of photoinduced electron transfer is increased. By comparing the magnitude of this increase with existing values for NAD(P)H4-FMN distances, based on charge-transfer complex absorbance and experimental kinetic isotope effect reaction data, we show that this method can be used as a sensitive probe of donor-acceptor distance in a range of enzyme systems.

摘要

在被认为快速运动有助于 H 转移效率的酶系统中,氢供体和受体之间的距离是一个非常重要的因素。供体-受体距离的亚埃变化对反应速率有很大的影响,因此,对这些变化的敏感探针是我们理解酶功能的重要工具。在这项研究中,我们使用超快瞬态吸收光谱法来研究光诱导电子转移速率,它对距离的微小变化也非常敏感,研究对象是辅酶类似物 NAD(P)H4 与模型黄素酶吗啡酮还原酶(野生型和选定变体)和五亚乙基六胺四硝酯还原酶(野生型)中异咯嗪中心之间的电子转移速率。结果表明,当辅酶添加到蛋白质中时,光诱导电子转移的速率会增加。通过将这种增加的幅度与基于电荷转移复合物吸收和实验动力学同位素效应反应数据的 NAD(P)H4-FMN 距离的现有值进行比较,我们表明该方法可用于一系列酶系统中供体-受体距离的敏感探针。

相似文献

3
How donor-bridge-acceptor energetics influence electron tunneling dynamics and their distance dependences.
Acc Chem Res. 2011 Jan 18;44(1):25-35. doi: 10.1021/ar100092v. Epub 2010 Oct 14.
7
A hydrogen bond network in the active site of Anabaena ferredoxin-NADP(+) reductase modulates its catalytic efficiency.
Biochim Biophys Acta. 2014 Feb;1837(2):251-63. doi: 10.1016/j.bbabio.2013.10.010. Epub 2013 Nov 4.
9
Electron-Coupled Double Proton Transfer in the Slr1694 BLUF Photoreceptor: A Multireference Electronic Structure Study.
J Phys Chem B. 2019 Jan 17;123(2):439-447. doi: 10.1021/acs.jpcb.8b10973. Epub 2019 Jan 3.

引用本文的文献

1
Transitioning enzyme catalysis towards photocatalysis.
Philos Trans A Math Phys Eng Sci. 2025 May 8;383(2296):20230380. doi: 10.1098/rsta.2023.0380.
2
Biomolecular infrared spectroscopy: making time for dynamics.
Chem Sci. 2023 Nov 28;15(2):414-430. doi: 10.1039/d3sc05223k. eCollection 2024 Jan 3.
4
Hydride Transfer Mechanism of Enzymatic Sugar Nucleotide C2 Epimerization Probed with a Loose-Fit CDP-Glucose Substrate.
ACS Catal. 2022 Jun 17;12(12):6816-6830. doi: 10.1021/acscatal.2c00257. Epub 2022 May 25.
5
Active-Site Environmental Factors Customize the Photophysics of Photoenzymatic Old Yellow Enzymes.
J Phys Chem B. 2020 Dec 10;124(49):11236-11249. doi: 10.1021/acs.jpcb.0c09523. Epub 2020 Nov 24.
6
Spectroscopic evidence for direct flavin-flavin contact in a bifurcating electron transfer flavoprotein.
J Biol Chem. 2020 Sep 4;295(36):12618-12634. doi: 10.1074/jbc.RA120.013174. Epub 2020 Jul 13.
7
Ultrafast Vibrational Energy Transfer between Protein and Cofactor in a Flavoenzyme.
J Phys Chem B. 2020 Jun 25;124(25):5163-5168. doi: 10.1021/acs.jpcb.0c04929. Epub 2020 Jun 15.
8
Distinct properties underlie flavin-based electron bifurcation in a novel electron transfer flavoprotein FixAB from .
J Biol Chem. 2018 Mar 30;293(13):4688-4701. doi: 10.1074/jbc.RA117.000707. Epub 2018 Feb 9.
9
Engineered control of enzyme structural dynamics and function.
Protein Sci. 2018 Apr;27(4):825-838. doi: 10.1002/pro.3379. Epub 2018 Feb 16.

本文引用的文献

1
Heavy-enzyme kinetic isotope effects on proton transfer in alanine racemase.
J Am Chem Soc. 2013 Feb 20;135(7):2509-11. doi: 10.1021/ja3101243. Epub 2013 Feb 5.
2
Fast protein motions are coupled to enzyme H-transfer reactions.
J Am Chem Soc. 2013 Feb 20;135(7):2512-7. doi: 10.1021/ja311277k. Epub 2013 Feb 11.
3
Good vibrations in enzyme-catalysed reactions.
Nat Chem. 2012 Jan 29;4(3):161-8. doi: 10.1038/nchem.1223.
4
Femtosecond dynamics coupled to chemical barrier crossing in a Born-Oppenheimer enzyme.
Proc Natl Acad Sci U S A. 2011 Nov 15;108(46):18661-5. doi: 10.1073/pnas.1114900108. Epub 2011 Nov 7.
5
Mass-dependent bond vibrational dynamics influence catalysis by HIV-1 protease.
J Am Chem Soc. 2011 Dec 7;133(48):19358-61. doi: 10.1021/ja209391n. Epub 2011 Nov 11.
6
New insights into the ultrafast photophysics of oxidized and reduced FAD in solution.
J Phys Chem A. 2011 Apr 21;115(15):3251-62. doi: 10.1021/jp110741y. Epub 2011 Mar 25.
7
How does pressure affect barrier compression and isotope effects in an enzymatic hydrogen tunneling reaction?
Angew Chem Int Ed Engl. 2011 Feb 25;50(9):2129-32. doi: 10.1002/anie.201006668. Epub 2011 Jan 25.
8
Update 1 of: Tunneling and dynamics in enzymatic hydride transfer.
Chem Rev. 2010 Dec 8;110(12):PR41-67. doi: 10.1021/cr1001035.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验