Hoben John P, Lubner Carolyn E, Ratzloff Michael W, Schut Gerrit J, Nguyen Diep M N, Hempel Karl W, Adams Michael W W, King Paul W, Miller Anne-Frances
From the Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506.
National Renewable Energy Laboratory, Golden, Colorado 80401.
J Biol Chem. 2017 Aug 25;292(34):14039-14049. doi: 10.1074/jbc.M117.794214. Epub 2017 Jun 14.
Flavin-based electron transfer bifurcation is emerging as a fundamental and powerful mechanism for conservation and deployment of electrochemical energy in enzymatic systems. In this process, a pair of electrons is acquired at intermediate reduction potential ( intermediate reducing power), and each electron is passed to a different acceptor, one with lower and the other with higher reducing power, leading to "bifurcation." It is believed that a strongly reducing semiquinone species is essential for this process, and it is expected that this species should be kinetically short-lived. We now demonstrate that the presence of a short-lived anionic flavin semiquinone (ASQ) is not sufficient to infer the existence of bifurcating activity, although such a species may be necessary for the process. We have used transient absorption spectroscopy to compare the rates and mechanisms of decay of ASQ generated photochemically in bifurcating NADH-dependent ferredoxin-NADP oxidoreductase and the non-bifurcating flavoproteins nitroreductase, NADH oxidase, and flavodoxin. We found that different mechanisms dominate ASQ decay in the different protein environments, producing lifetimes ranging over 2 orders of magnitude. Capacity for electron transfer among redox cofactors charge recombination with nearby donors can explain the range of ASQ lifetimes that we observe. Our results support a model wherein efficient electron propagation can explain the short lifetime of the ASQ of bifurcating NADH-dependent ferredoxin-NADP oxidoreductase I and can be an indication of capacity for electron bifurcation.
基于黄素的电子传递分叉正成为酶系统中电化学能量守恒和利用的一种基本且强大的机制。在这个过程中,一对电子在中等还原电位(中等还原能力)下被获取,并且每个电子被传递给不同的受体,一个受体的还原能力较低,另一个受体的还原能力较高,从而导致“分叉”。据信,一种强还原性的半醌物种对于这个过程至关重要,并且预计该物种在动力学上寿命较短。我们现在证明,短寿命的阴离子黄素半醌(ASQ)的存在不足以推断分叉活性的存在,尽管这种物种可能是该过程所必需的。我们使用瞬态吸收光谱来比较在分叉的依赖NADH的铁氧还蛋白 - NADP氧化还原酶以及非分叉的黄素蛋白硝基还原酶、NADH氧化酶和黄素氧还蛋白中光化学产生的ASQ的衰减速率和机制。我们发现,在不同的蛋白质环境中,不同的机制主导着ASQ的衰减,产生的寿命范围超过2个数量级。氧化还原辅因子之间的电子转移能力以及与附近供体的电荷复合可以解释我们观察到的ASQ寿命范围。我们的结果支持一个模型,其中有效的电子传播可以解释分叉的依赖NADH的铁氧还蛋白 - NADP氧化还原酶I的ASQ的短寿命,并且可以作为电子分叉能力的一个指标。