Heart Foundation Research Centre, Griffith Health Institute, Griffith University, Southport, Australia.
Heart Research, Murdoch Children's Research Institute, Parkville, VIC, Australia; Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
Exp Gerontol. 2014 Feb;50:72-81. doi: 10.1016/j.exger.2013.11.015. Epub 2013 Dec 4.
Changes in cytoprotective signaling may influence cardiac aging, and underpin sensitization to ischemic insult and desensitization to 'anti-ischemic' therapies. We tested whether age-dependent shifts in ischemia-reperfusion (I-R) tolerance in murine and human myocardium are associated with reduced efficacies and coupling of membrane, cytoplasmic and mitochondrial survival-signaling. Hormesis (exemplified in ischemic preconditioning; IPC) and expression of proteins influencing signaling/stress-resistance were also assessed in mice. Mouse hearts (18 vs. 2-4 mo) and human atrial tissue (75±2 vs. 55±2 yrs) exhibited profound age-dependent reductions in I-R tolerance. In mice aging negated cardioprotection via IPC, G-protein coupled receptor (GPCR) agonism (opioid, A1 and A3 adenosine receptors) and distal protein kinase c (PKC) activation (4 nM phorbol 12-myristate 13-acetate; PMA). In contrast, p38-mitogen activated protein kinase (p38-MAPK) activation (1 μM anisomycin), mitochondrial ATP-sensitive K(+) channel (mKATP) opening (50 μM diazoxide) and permeability transition pore (mPTP) inhibition (0.2 μM cyclosporin A) retained protective efficacies in older hearts (though failed to eliminate I-R tolerance differences). A similar pattern of change in protective efficacies was observed in human tissue. Murine hearts exhibited molecular changes consistent with altered membrane control (reduced caveolin-3, cholesterol and caveolae), kinase signaling (reduced p70 ribosomal s6 kinase; p70s6K) and stress-resistance (increased G-protein receptor kinase 2, GRK2; glycogen synthase kinase 3β, GSK3β; and cytosolic cytochrome c). In summary, myocardial I-R tolerance declines with age in association with dysfunctional hormesis and transduction of survival signals from GPCRs/PKC to mitochondrial effectors. Differential changes in proteins governing caveolar and mitochondrial function may contribute to signal dysfunction and stress-intolerance.
细胞保护信号的变化可能影响心脏衰老,并为缺血性损伤的敏感性和“抗缺血性”治疗的脱敏提供基础。我们测试了在鼠和人心肌中,与缺血再灌注(I-R)耐受性相关的年龄依赖性变化是否与膜、细胞质和线粒体存活信号的功效降低和偶联有关。我们还在小鼠中评估了应激(以缺血预处理为例;IPC)和影响信号/应激抵抗的蛋白的表达。与年轻(18 个月 vs. 2-4 个月)相比,老年(24 个月)鼠心在 I-R 耐受性方面有显著的年龄依赖性降低。在小鼠中,衰老否定了通过 IPC、G 蛋白偶联受体(GPCR)激动剂(阿片类、A1 和 A3 腺苷受体)和远位蛋白激酶 C(PKC)激活(4 nM 佛波醇 12-肉豆蔻酸 13-醋酸酯;PMA)实现的心脏保护作用。相比之下,p38-有丝分裂原激活的蛋白激酶(p38-MAPK)激活(1 μM 放线菌酮)、线粒体 ATP 敏感性 K+通道(mKATP)开放(50 μM 二氮嗪)和通透性转换孔(mPTP)抑制(0.2 μM 环孢菌素 A)在老年心脏中保持了保护作用(尽管未能消除 I-R 耐受性差异)。在人类组织中也观察到了保护功效变化的类似模式。鼠心表现出与膜控制改变一致的分子变化(减少窖蛋白-3、胆固醇和小窝)、激酶信号(减少 p70 核糖体 S6 激酶;p70s6K)和应激抵抗(增加 G 蛋白受体激酶 2、GRK2;糖原合酶激酶 3β、GSK3β;和细胞质细胞色素 c)。总之,心肌 I-R 耐受性随年龄增长而下降,与功能失调的应激和从 GPCRs/PKC 到线粒体效应器传递存活信号有关。调节小窝和线粒体功能的蛋白质的差异变化可能导致信号功能障碍和应激不耐受。