1] Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Molecular and Cellular Biology Program, University of Washington, Seattle, Washington, USA.
1] Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.
Nat Struct Mol Biol. 2014 Jan;21(1):88-94. doi: 10.1038/nsmb.2723. Epub 2013 Dec 8.
As RNA polymerase II (Pol II) transcribes a gene, it encounters an array of well-ordered nucleosomes. How it traverses through this array in vivo remains unresolved. One model proposes that torsional stress generated during transcription destabilizes nucleosomes ahead of Pol II. Here, we describe a method for high-resolution mapping of underwound DNA, using next-generation sequencing, and show that torsion is correlated with gene expression in Drosophila melanogaster cells. Accumulation of torsional stress, through topoisomerase inhibition, results in increased Pol II at transcription start sites. Whereas topoisomerase I inhibition results in increased nascent RNA transcripts, topoisomerase II inhibition causes little change. Despite the different effects on Pol II elongation, topoisomerase inhibition results in increased nucleosome turnover and salt solubility within gene bodies, thus suggesting that the elongation-independent effects of torsional stress on nucleosome dynamics contributes to the destabilization of nucleosomes.
当 RNA 聚合酶 II(Pol II)转录一个基因时,它会遇到一系列排列有序的核小体。然而,它在体内如何穿越这个核小体阵列的问题尚未得到解决。有一种模型提出,转录过程中产生的扭转力会使 Pol II 前方的核小体不稳定。在这里,我们描述了一种使用下一代测序技术进行高分辨率扭曲 DNA 作图的方法,并表明在果蝇细胞中,扭转与基因表达相关。通过拓扑异构酶抑制积累扭转应力会导致 Pol II 在转录起始位点的积累。尽管拓扑异构酶 I 抑制会导致新生 RNA 转录本增加,但拓扑异构酶 II 抑制几乎没有变化。尽管对 Pol II 延伸的影响不同,但拓扑异构酶抑制会导致基因体内的核小体周转率和盐溶解度增加,因此表明扭转对核小体动力学的延伸不依赖效应有助于核小体的不稳定。