Suppr超能文献

评价 Bootstrap 方法在估计非线性混合效应模型中参数不确定性的应用:群体药代动力学中的模拟研究。

Evaluation of bootstrap methods for estimating uncertainty of parameters in nonlinear mixed-effects models: a simulation study in population pharmacokinetics.

机构信息

INSERM, UMR 738, 75018, Paris, France,

出版信息

J Pharmacokinet Pharmacodyn. 2014 Feb;41(1):15-33. doi: 10.1007/s10928-013-9343-z. Epub 2013 Dec 8.

Abstract

Bootstrap methods are used in many disciplines to estimate the uncertainty of parameters, including multi-level or linear mixed-effects models. Residual-based bootstrap methods which resample both random effects and residuals are an alternative approach to case bootstrap, which resamples the individuals. Most PKPD applications use the case bootstrap, for which software is available. In this study, we evaluated the performance of three bootstrap methods (case bootstrap, nonparametric residual bootstrap and parametric bootstrap) by a simulation study and compared them to that of an asymptotic method (Asym) in estimating uncertainty of parameters in nonlinear mixed-effects models (NLMEM) with heteroscedastic error. This simulation was conducted using as an example of the PK model for aflibercept, an anti-angiogenic drug. As expected, we found that the bootstrap methods provided better estimates of uncertainty for parameters in NLMEM with high nonlinearity and having balanced designs compared to the Asym, as implemented in MONOLIX. Overall, the parametric bootstrap performed better than the case bootstrap as the true model and variance distribution were used. However, the case bootstrap is faster and simpler as it makes no assumptions on the model and preserves both between subject and residual variability in one resampling step. The performance of the nonparametric residual bootstrap was found to be limited when applying to NLMEM due to its failure to reflate the variance before resampling in unbalanced designs where the Asym and the parametric bootstrap performed well and better than case bootstrap even with stratification.

摘要

引导法在许多学科中被用于估计参数的不确定性,包括多层次或线性混合效应模型。基于残差的引导法同时对随机效应和残差进行重采样,是一种替代病例引导法的方法,病例引导法对个体进行重采样。大多数 PKPD 应用程序使用病例引导法,并且有可用的软件。在这项研究中,我们通过模拟研究评估了三种引导法(病例引导法、非参数残差引导法和参数引导法)的性能,并将其与渐近法(Asym)进行了比较,以估计具有异方差误差的非线性混合效应模型(NLMEM)中参数的不确定性。该模拟使用抗血管生成药物阿柏西普的 PK 模型作为示例。正如预期的那样,我们发现与 MONOLIX 中实现的 Asym 相比,在具有高度非线性和平衡设计的 NLMEM 中,引导法为参数提供了更好的不确定性估计。总体而言,参数引导法比病例引导法表现更好,因为它使用了真实模型和方差分布。然而,病例引导法更快更简单,因为它对模型没有任何假设,并在一次重采样步骤中保留了个体间和残差变异性。由于在不平衡设计中,非参数残差引导法在重采样前无法重新膨胀方差,因此其在应用于 NLMEM 时的性能受到限制,而 Asym 和参数引导法在这种情况下表现良好,并且比病例引导法更好,即使存在分层。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验