Department of Pharmaceutical Biosciences, Uppsala University, P.O. Box 591, 751 24, Uppsala, Sweden.
J Pharmacokinet Pharmacodyn. 2016 Dec;43(6):597-608. doi: 10.1007/s10928-016-9496-7. Epub 2016 Oct 11.
Knowledge of the uncertainty in model parameters is essential for decision-making in drug development. Contrarily to other aspects of nonlinear mixed effects models (NLMEM), scrutiny towards assumptions around parameter uncertainty is low, and no diagnostic exists to judge whether the estimated uncertainty is appropriate. This work aims at introducing a diagnostic capable of assessing the appropriateness of a given parameter uncertainty distribution. The new diagnostic was applied to case bootstrap examples in order to investigate for which dataset sizes case bootstrap is appropriate for NLMEM. The proposed diagnostic is a plot comparing the distribution of differences in objective function values (dOFV) of the proposed uncertainty distribution to a theoretical Chi square distribution with degrees of freedom equal to the number of estimated model parameters. The uncertainty distribution was deemed appropriate if its dOFV distribution was overlaid with or below the theoretical distribution. The diagnostic was applied to the bootstrap of two real data and two simulated data examples, featuring pharmacokinetic and pharmacodynamic models and datasets of 20-200 individuals with between 2 and 5 observations on average per individual. In the real data examples, the diagnostic indicated that case bootstrap was unsuitable for NLMEM analyses with around 70 individuals. A measure of parameter-specific "effective" sample size was proposed as a potentially better indicator of bootstrap adequacy than overall sample size. In the simulation examples, bootstrap confidence intervals were shown to underestimate inter-individual variability at low sample sizes. The proposed diagnostic proved a relevant tool for assessing the appropriateness of a given parameter uncertainty distribution and as such it should be routinely used.
对于药物开发中的决策,了解模型参数的不确定性至关重要。与非线性混合效应模型(NLMEM)的其他方面不同,对参数不确定性假设的审查不足,并且没有诊断工具来判断估计的不确定性是否合适。本工作旨在引入一种能够评估给定参数不确定性分布是否合适的诊断工具。新的诊断工具应用于案例自举示例,以研究在何种数据集中自举适用于 NLMEM。所提出的诊断是一个比较图,将所提出的不确定性分布的目标函数值(dOFV)差异分布与自由度等于估计模型参数数量的理论卡方分布进行比较。如果不确定性分布的 dOFV 分布叠加在理论分布之上或之下,则认为该分布是合适的。该诊断工具应用于两个真实数据和两个模拟数据示例的自举中,这些示例具有药代动力学和药效学模型以及 20-200 名个体的数据,每个个体的平均观测值在 2 到 5 之间。在真实数据示例中,该诊断表明,对于大约 70 名个体的 NLMEM 分析,案例自举不合适。提出了一种参数特定的“有效”样本量度量作为比总体样本量更好的自举适当性指标。在模拟示例中,自举置信区间显示在样本量较小时低估个体间变异性。所提出的诊断证明是评估给定参数不确定性分布是否合适的相关工具,因此应常规使用。