Department of Plant Biology, Carnegie Institution of Washington, 290 Panama Street, 94305-1297, Stanford, CA, USA.
Photosynth Res. 1993 Jun;36(3):149-68. doi: 10.1007/BF00033035.
Recently, a number of techniques, some of them relatively new and many often used in combination, have given a clearer picture of the dynamic role of electron transport in Photosystem I of photosynthesis and of coupled cyclic photophosphorylation. For example, the photoacoustic technique has detected cyclic electron transport in vivo in all the major algal groups and in leaves of higher plants. Spectroscopic measurements of the Photosystem I reaction center and of the changes in light scattering associated with thylakoid membrane energization also indicate that cyclic photophosphorylation occurs in living plants and cyanobacteria, particularly under stressful conditions.In cyanobacteria, the path of cyclic electron transport has recently been proposed to include an NAD(P)H dehydrogenase, a complex that may also participate in respiratory electron transport. Photosynthesis and respiration may share common electron carriers in eukaryotes also. Chlororespiration, the uptake of O2 in the dark by chloroplasts, is inhibited by excitation of Photosystem I, which diverts electrons away from the chlororespiratory chain into the photosynthetic electron transport chain. Chlororespiration in N-starved Chlamydomonas increases ten fold over that of the control, perhaps because carbohydrates and NAD(P)H are oxidized and ATP produced by this process.The regulation of energy distribution to the photosystems and of cyclic and non-cyclic phosphorylation via state 1 to state 2 transitions may involve the cytochrome b 6-f complex. An increased demand for ATP lowers the transthylakoid pH gradient, activates the b 6-f complex, stimulates phosphorylation of the light-harvesting chlorophyll-protein complex of Photosystem II and decreases energy input to Photosystem II upon induction of state 2. The resulting increase in the absorption by Photosystem I favors cyclic electron flow and ATP production over linear electron flow to NADP and 'poises' the system by slowing down the flow of electrons originating in Photosystem II.Cyclic electron transport may function to prevent photoinhibition to the photosynthetic apparatus as well as to provide ATP. Thus, under high light intensities where CO2 can limit photosynthesis, especially when stomates are closed as a result of water stress, the proton gradient established by coupled cyclic electron transport can prevent over-reduction of the electron transport system by increasing thermal de-excitation in Photosystem II (Weis and Berry 1987). Increased cyclic photophosphorylation may also serve to drive ion uptake in nutrient-deprived cells or ion export in salt-stressed cells.There is evidence in some plants for a specialization of Photosystem I. For example, in the red alga Porphyra about one third of the total Photosystem I units are engaged in linear electron transfer from Photosystem II and the remaining two thirds of the Photosystem I units are specialized for cyclic electron flow. Other organisms show evidence of similar specialization.Improved understanding of the biological role of cyclic photophosphorylation will depend on experiments made on living cells and measurements of cyclic photophosphorylation in vivo.
最近,一些技术,其中一些相对较新,许多经常结合使用,更清楚地描绘了电子传递在光合作用的光系统 I 中的动态作用和偶联环式磷酸化。例如,光声技术已经在所有主要藻类群和高等植物的叶片中检测到了体内的环式电子传递。对光系统 I 反应中心的光谱测量以及与类囊体膜供能相关的光散射变化的测量也表明,环式磷酸化发生在活体植物和蓝细菌中,特别是在胁迫条件下。在蓝细菌中,环式电子传递的途径最近被提议包括 NAD(P)H 脱氢酶,该复合物也可能参与呼吸电子传递。真核生物中光合作用和呼吸作用也可能共享共同的电子载体。在叶绿体中黑暗中吸收 O2 的氯呼吸作用被光系统 I 的激发抑制,这会使电子从氯呼吸链转移到光合作用电子传递链中。饥饿的衣藻的氯呼吸作用比对照增加了十倍,这可能是因为碳水化合物和 NAD(P)H 被氧化,并且该过程产生 ATP。通过从状态 1 到状态 2 的转变来调节能量分配给光系统和环式和非环式磷酸化,可能涉及细胞色素 b6-f 复合物。对 ATP 的需求增加会降低跨类囊体 pH 梯度,激活 b6-f 复合物,刺激光系统 II 的捕光叶绿素蛋白复合物的磷酸化,并在诱导状态 2 时减少能量输入到光系统 II。由此引起的光系统 I 的吸收增加有利于环式电子流和 ATP 的产生,而不是线性电子流到 NADP,并且通过减缓源自光系统 II 的电子流来“平衡”系统。环式电子传递可能有助于防止光合作用装置的光抑制,以及提供 ATP。因此,在高光强下,特别是当由于水胁迫而关闭气孔导致 CO2 限制光合作用时,通过偶联环式电子传递建立的质子梯度可以通过增加光系统 II 中的热去激发来防止电子传递系统的过度还原(Weis 和 Berry 1987)。增加的环式磷酸化也可能有助于在营养缺乏的细胞中驱动离子摄取或在盐胁迫的细胞中驱动离子外排。在一些植物中,有证据表明光系统 I 具有专业化。例如,在红藻紫菜中,约三分之一的总光系统 I 单位参与光系统 II 的线性电子转移,其余三分之二的光系统 I 单位专门用于环式电子流。其他生物体也显示出类似的专业化的证据。对环式磷酸化的生物学作用的更好理解将取决于对活细胞的实验和体内环式磷酸化的测量。