Mills J D, Slovacek R E, Hind G
Biochim Biophys Acta. 1978 Nov 9;504(2):298-309. doi: 10.1016/0005-2728(78)90178-0.
Antimycin has been used to study the role of cyclic electron transport in isolated intact chloroplasts maintained under aerobic conditions. At all light intensities, antimycin inhibits CO2 fixation when assay conditions are optimal. When turnover of the Calvin cycle is inhibited, antimycin stimulates bicarbonate-dependent O2 evolution. Energy-dependent processes such as chlorophyll a and 9-aminoacridine fluorescence quenching, and light-scattering (apparent absorption) changes are inhibited by antimycin. The results suggest that cyclic electron transport contributes to photophosphorylation under aerobic conditions and is obligatory as a source of ATP during the most active periods of CO2 fixation in vivo. Cyclic electron transport can be stimulated either by inhibiting Photosystem II activity or increasing the turnover of Photosystem I relative to Photosystem II. These effects are interpreted in terms of the need for correct redox poising of carriers in the pathway in order to sustain maximum rates of cyclic electron flow. Binding studies indicate the presence of a high affinity antimycin binding site on chloroplast membranes. The stoichiometry and dissociation constant of the high affinity site are consistent with the idea that antimycin inhibits cyclic electron transport by binding to a b-type cytochrome in the thylakoid membrane.
抗霉素已被用于研究在有氧条件下维持的分离完整叶绿体中循环电子传递的作用。在所有光照强度下,当测定条件最佳时,抗霉素会抑制二氧化碳固定。当卡尔文循环的周转受到抑制时,抗霉素会刺激碳酸氢盐依赖性氧气释放。抗霉素会抑制能量依赖性过程,如叶绿素a和9-氨基吖啶荧光猝灭以及光散射(表观吸收)变化。结果表明,循环电子传递在有氧条件下有助于光合磷酸化,并且在体内二氧化碳固定最活跃的时期作为ATP的来源是必不可少的。循环电子传递可以通过抑制光系统II的活性或相对于光系统II增加光系统I的周转来刺激。这些效应是根据为了维持最大循环电子流速率而需要使途径中的载体具有正确的氧化还原平衡来解释的。结合研究表明在叶绿体膜上存在高亲和力的抗霉素结合位点。高亲和力位点的化学计量和解离常数与抗霉素通过与类囊体膜中的b型细胞色素结合来抑制循环电子传递的观点一致。