Suppr超能文献

用于软体机器人的工程化骨骼肌组织:制造策略、当前应用和未来挑战。

Engineered skeletal muscle tissue for soft robotics: fabrication strategies, current applications, and future challenges.

机构信息

Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.

出版信息

Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2014 Mar-Apr;6(2):178-95. doi: 10.1002/wnan.1254. Epub 2013 Dec 6.

Abstract

Skeletal muscle is a scalable actuator system used throughout nature from the millimeter to meter length scales and over a wide range of frequencies and force regimes. This adaptability has spurred interest in using engineered skeletal muscle to power soft robotics devices and in biotechnology and medical applications. However, the challenges to doing this are similar to those facing the tissue engineering and regenerative medicine fields; specifically, how do we translate our understanding of myogenesis in vivo to the engineering of muscle constructs in vitro to achieve functional integration with devices. To do this researchers are developing a number of ways to engineer the cellular microenvironment to guide skeletal muscle tissue formation. This includes understanding the role of substrate stiffness and the mechanical environment, engineering the spatial organization of biochemical and physical cues to guide muscle alignment, and developing bioreactors for mechanical and electrical conditioning. Examples of engineered skeletal muscle that can potentially be used in soft robotics include 2D cantilever-based skeletal muscle actuators and 3D skeletal muscle tissues engineered using scaffolds or directed self-organization. Integration into devices has led to basic muscle-powered devices such as grippers and pumps as well as more sophisticated muscle-powered soft robots that walk and swim. Looking forward, current, and future challenges include identifying the best source of muscle precursor cells to expand and differentiate into myotubes, replacing cardiomyocytes with skeletal muscle tissue as the bio-actuator of choice for soft robots, and vascularization and innervation to enable control and nourishment of larger muscle tissue constructs.

摘要

骨骼肌是一种可扩展的执行器系统,从毫米到米的长度尺度,以及广泛的频率和力范围,都可以在自然界中使用。这种适应性激发了人们使用工程化骨骼肌为软机器人设备以及生物技术和医疗应用提供动力的兴趣。然而,实现这一目标所面临的挑战与组织工程和再生医学领域所面临的挑战相似;具体来说,我们如何将我们对体内成肌的理解转化为体外肌肉构建的工程设计,以实现与设备的功能整合。为此,研究人员正在开发许多方法来设计细胞微环境,以指导骨骼肌组织的形成。这包括了解基底硬度和机械环境的作用,设计生物化学和物理线索的空间组织,以指导肌肉对齐,以及开发用于机械和电气调节的生物反应器。可用于软机器人的工程化骨骼肌的例子包括基于二维悬臂的骨骼肌执行器和使用支架或定向自组织工程化的 3D 骨骼肌组织。与设备的集成已经导致了基本的肌肉驱动设备,如夹持器和泵,以及更复杂的肌肉驱动软机器人,如行走和游泳机器人。展望未来,当前和未来的挑战包括确定最佳的肌肉前体细胞来源,以扩增和分化为肌管,用骨骼肌组织替代心肌细胞作为软机器人的首选生物执行器,以及血管化和神经支配,以实现对更大的肌肉组织构建体的控制和滋养。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验