Suppr超能文献

用于计算复杂分子动力学和亚稳态的预测和隐马尔可夫模型。

Projected and hidden Markov models for calculating kinetics and metastable states of complex molecules.

机构信息

Department of Mathematics and Computer Science, FU Berlin, Arnimallee 6, 14159 Berlin, Germany.

出版信息

J Chem Phys. 2013 Nov 14;139(18):184114. doi: 10.1063/1.4828816.

Abstract

Markov state models (MSMs) have been successful in computing metastable states, slow relaxation timescales and associated structural changes, and stationary or kinetic experimental observables of complex molecules from large amounts of molecular dynamics simulation data. However, MSMs approximate the true dynamics by assuming a Markov chain on a clusters discretization of the state space. This approximation is difficult to make for high-dimensional biomolecular systems, and the quality and reproducibility of MSMs has, therefore, been limited. Here, we discard the assumption that dynamics are Markovian on the discrete clusters. Instead, we only assume that the full phase-space molecular dynamics is Markovian, and a projection of this full dynamics is observed on the discrete states, leading to the concept of Projected Markov Models (PMMs). Robust estimation methods for PMMs are not yet available, but we derive a practically feasible approximation via Hidden Markov Models (HMMs). It is shown how various molecular observables of interest that are often computed from MSMs can be computed from HMMs/PMMs. The new framework is applicable to both, simulation and single-molecule experimental data. We demonstrate its versatility by applications to educative model systems, a 1 ms Anton MD simulation of the bovine pancreatic trypsin inhibitor protein, and an optical tweezer force probe trajectory of an RNA hairpin.

摘要

马尔可夫状态模型 (MSMs) 在计算复杂分子的亚稳态、慢松弛时间尺度和相关结构变化,以及静态或动态实验观测值方面非常成功,其方法是从大量分子动力学模拟数据中进行。然而,MSMs 通过假设状态空间上的簇离散化上的马尔可夫链来近似真实的动力学。这种近似对于高维生物分子系统来说很难实现,因此 MSMs 的质量和可重复性受到了限制。在这里,我们放弃了在离散簇上动力学是马尔可夫的假设。相反,我们仅假设全相空间分子动力学是马尔可夫的,并且可以在离散状态上观察到此全动力学的投影,从而产生了投影马尔可夫模型 (PMMs) 的概念。PMMs 的稳健估计方法尚未可用,但我们通过隐马尔可夫模型 (HMMs) 推导出了一种实用可行的近似方法。本文展示了如何从 HMMs/PMMs 计算通常从 MSMs 计算的各种感兴趣的分子观测值。该新框架适用于模拟和单分子实验数据。我们通过对教育模型系统、牛胰蛋白酶抑制剂蛋白 1ms Anton MD 模拟以及 RNA 发夹的光镊力探针轨迹的应用,展示了其多功能性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验