Center for Atomic-scale Materials Design, Department of Physics, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
J Chem Phys. 2013 Nov 14;139(18):184307. doi: 10.1063/1.4829520.
We study the effect of functional groups (CH34, OCH3, CH3, Cl, CN, F4) on the electronic transport properties of 1,4-benzenediamine molecular junctions using the non-equilibrium Green function method. Exchange and correlation effects are included at various levels of theory, namely density functional theory (DFT), energy level-corrected DFT (DFT+Σ), Hartree-Fock and the many-body GW approximation. All methods reproduce the expected trends for the energy of the frontier orbitals according to the electron donating or withdrawing character of the substituent group. However, only the GW method predicts the correct ordering of the conductance amongst the molecules. The absolute GW (DFT) conductance is within a factor of two (three) of the experimental values. Correcting the DFT orbital energies by a simple physically motivated scissors operator, Σ, can bring the DFT conductances close to experiments, but does not improve on the relative ordering. We ascribe this to a too strong pinning of the molecular energy levels to the metal Fermi level by DFT which suppresses the variation in orbital energy with functional group.
我们使用非平衡格林函数方法研究了功能基团(CH34、OCH3、CH3、Cl、CN、F4)对 1,4-苯二胺分子结电子输运性质的影响。在不同理论水平上考虑了交换和相关效应,即密度泛函理论(DFT)、能级修正的 DFT(DFT+Σ)、哈特ree-fock 和多体 GW 近似。所有方法都根据取代基的供电子或吸电子特性再现了前沿轨道能量的预期趋势。然而,只有 GW 方法预测了分子间电导的正确顺序。绝对 GW(DFT)电导与实验值相差约两倍(三倍)。通过简单的物理启发的剪刀运算符Σ 对 DFT 轨道能量进行修正,可以使 DFT 电导接近实验值,但不能改善相对排序。我们将这归因于 DFT 对分子能级与金属费米能级的过度钉扎,这抑制了轨道能量随功能基团的变化。