Suppr超能文献

通过分子导线的电子传输的长度依赖性——第一性原理视角

Length dependence of electron transport through molecular wires--a first principles perspective.

作者信息

Khoo Khoong Hong, Chen Yifeng, Li Suchun, Quek Su Ying

机构信息

Department of Physics, Faculty of Science, National University of Singapore, 2 Science Drive 3, Singapore 117551, Singapore.

出版信息

Phys Chem Chem Phys. 2015 Jan 7;17(1):77-96. doi: 10.1039/c4cp05006a.

Abstract

One-dimensional wires constitute a fundamental building block in nanoscale electronics. However, truly one-dimensional metallic wires do not exist due to Peierls distortion. Molecular wires come close to being stable one-dimensional wires, but are typically semiconductors, with charge transport occurring via tunneling or thermally-activated hopping. In this review, we discuss electron transport through molecular wires, from a theoretical, quantum mechanical perspective based on first principles. We focus specifically on the off-resonant tunneling regime, applicable to shorter molecular wires (<∼4-5 nm) where quantum mechanics dictates electron transport. Here, conductance decays exponentially with the wire length, with an exponential decay constant, beta, that is independent of temperature. Different levels of first principles theory are discussed, starting with the computational workhorse - density functional theory (DFT), and moving on to many-electron GW methods as well as GW-inspired DFT + Sigma calculations. These different levels of theory are applied in two major computational frameworks - complex band structure (CBS) calculations to estimate the tunneling decay constant, beta, and Landauer-Buttiker transport calculations that consider explicitly the effects of contact geometry, and compute the transmission spectra directly. In general, for the same level of theory, the Landauer-Buttiker calculations give more quantitative values of beta than the CBS calculations. However, the CBS calculations have a long history and are particularly useful for quick estimates of beta. Comparing different levels of theory, it is clear that GW and DFT + Sigma calculations give significantly improved agreement with experiment compared to DFT, especially for the conductance values. Quantitative agreement can also be obtained for the Seebeck coefficient - another independent probe of electron transport. This excellent agreement provides confirmative evidence of off-resonant tunneling in the systems under investigation. Calculations show that the tunneling decay constant beta is a robust quantity that does not depend on details of the contact geometry, provided that the same contact geometry is used for all molecular lengths considered. However, because conductance is sensitive to contact geometry, values of beta obtained by considering conductance values where the contact geometry is changing with the molecular junction length can be quite different. Experimentally measured values of beta in general compare well with beta obtained using DFT + Sigma and GW transport calculations, while discrepancies can be attributed to changes in the experimental contact geometries with molecular length. This review also summarizes experimental and theoretical efforts towards finding perfect molecular wires with high conductance and small beta values.

摘要

一维导线是纳米级电子学中的基本构建单元。然而,由于佩尔斯畸变,真正的一维金属导线并不存在。分子导线接近稳定的一维导线,但通常是半导体,电荷传输通过隧穿或热激活跳跃发生。在本综述中,我们从基于第一性原理的理论、量子力学角度讨论了通过分子导线的电子传输。我们特别关注非共振隧穿 regime,适用于较短的分子导线(<约4 - 5纳米),其中量子力学决定电子传输。在此,电导随导线长度呈指数衰减,具有指数衰减常数β,且该常数与温度无关。我们讨论了不同层次的第一性原理理论,从计算主力——密度泛函理论(DFT)开始,进而讨论多电子GW方法以及受GW启发的DFT + Sigma计算。这些不同层次的理论应用于两个主要的计算框架——复能带结构(CBS)计算以估计隧穿衰减常数β,以及兰道尔 - 布蒂克尔输运计算,该计算明确考虑接触几何形状的影响并直接计算传输谱。一般来说,对于相同层次的理论,兰道尔 - 布蒂克尔计算给出的β值比CBS计算更具定量性。然而,CBS计算历史悠久,对于快速估计β特别有用。比较不同层次的理论,很明显,与DFT相比,GW和DFT + Sigma计算与实验的一致性有显著改善,特别是对于电导值。对于塞贝克系数(另一个独立的电子传输探针)也能获得定量一致性。这种出色的一致性为所研究系统中的非共振隧穿提供了确凿证据。计算表明,隧穿衰减常数β是一个稳健的量,不依赖于接触几何形状的细节,前提是对于所有考虑的分子长度都使用相同的接触几何形状。然而,由于电导对接触几何形状敏感,通过考虑接触几何形状随分子结长度变化的电导值获得的β值可能会有很大差异。实验测量的β值通常与使用DFT + Sigma和GW输运计算获得的β值比较吻合,而差异可归因于实验接触几何形状随分子长度的变化。本综述还总结了寻找具有高电导和小β值的完美分子导线的实验和理论努力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验