Deutsches Krebsforschungszentrum, Im Neuenheimer Feld 280, D-69120 Heidelberg, Germany and The Institute of Cancer Research, 15 Cotswold Road, Belmont, Sutton, Surrey SM2 5NG, United Kingdom.
Med Phys. 2013 Nov;40(11):111714. doi: 10.1118/1.4824150.
The advent of widespread kV-cone beam computer tomography in image guided radiation therapy and special therapeutic application of keV photons, e.g., in microbeam radiation therapy (MRT) require accurate and fast dose calculations for photon beams with energies between 40 and 200 keV. Multiple photon scattering originating from Compton scattering and the strong dependence of the photoelectric cross section on the atomic number of the interacting tissue render these dose calculations by far more challenging than the ones established for corresponding MeV beams. That is why so far developed analytical models of kV photon dose calculations fail to provide the required accuracy and one has to rely on time consuming Monte Carlo simulation techniques.
In this paper, the authors introduce a novel analytical approach for kV photon dose calculations with an accuracy that is almost comparable to the one of Monte Carlo simulations. First, analytical point dose and pencil beam kernels are derived for homogeneous media and compared to Monte Carlo simulations performed with the Geant4 toolkit. The dose contributions are systematically separated into contributions from the relevant orders of multiple photon scattering. Moreover, approximate scaling laws for the extension of the algorithm to inhomogeneous media are derived.
The comparison of the analytically derived dose kernels in water showed an excellent agreement with the Monte Carlo method. Calculated values deviate less than 5% from Monte Carlo derived dose values, for doses above 1% of the maximum dose. The analytical structure of the kernels allows adaption to arbitrary materials and photon spectra in the given energy range of 40-200 keV.
The presented analytical methods can be employed in a fast treatment planning system for MRT. In convolution based algorithms dose calculation times can be reduced to a few minutes.
kV 锥形束计算机断层扫描在图像引导放射治疗中的广泛应用以及 keV 光子的特殊治疗应用,例如在微束放射治疗(MRT)中,需要对能量在 40 到 200 keV 之间的光子束进行准确快速的剂量计算。康普顿散射引起的多次光子散射以及光电截面与相互作用组织的原子数的强烈依赖性,使得这些剂量计算比为相应 MeV 束建立的剂量计算困难得多。这就是为什么迄今为止开发的 kV 光子剂量计算分析模型无法提供所需的准确性,而必须依赖于耗时的蒙特卡罗模拟技术。
在本文中,作者引入了一种新的分析方法,用于 kV 光子剂量计算,其准确性几乎可与蒙特卡罗模拟相媲美。首先,针对均匀介质推导了解析点剂量和铅笔束核,并与使用 Geant4 工具包进行的蒙特卡罗模拟进行了比较。剂量贡献被系统地分离为多次光子散射的相关阶次的贡献。此外,还推导出了将算法扩展到非均匀介质的近似缩放定律。
在水中对解析得出的剂量核进行的比较显示,与蒙特卡罗方法具有极好的一致性。在蒙特卡罗得出的剂量值的 5%以下,对于最大剂量的 1%以上的剂量,计算值的偏差小于 5%。核的解析结构允许在给定的 40-200 keV 能量范围内适应任意材料和光子谱。
所提出的分析方法可用于 MRT 的快速治疗计划系统。在卷积算法中,剂量计算时间可以减少到几分钟。