Prasad Dilip K, Brown Michael S
J Opt Soc Am A Opt Image Sci Vis. 2013 Aug 1;30(8):1484-91. doi: 10.1364/JOSAA.30.001484.
This paper deals with tracking of deformable objects in the presence of occlusion using dominant point representation of the boundary contour. A novel nonintegral time propagation model for propagating the dominant points is proposed. It uses an initial guess generated from a linear operation and an analytical conjugate gradient approach for online robust learning of the shape deformation and motion model. A scheme is presented to automatically detect and correct the region of large local deformation. In order to deal with occlusion, admissible restrictions on deformation and motion of the object are automatically determined. The proposed method overcomes the need of offline learning and learns the deformation and motion model of the object using very few initial frames of the input video. The performance of the method is demonstrated using varieties of videos of different objects.
本文研究在存在遮挡的情况下,使用边界轮廓的主导点表示来跟踪可变形物体。提出了一种用于传播主导点的新型非积分时间传播模型。它使用从线性运算生成的初始猜测和解析共轭梯度方法来在线稳健学习形状变形和运动模型。提出了一种自动检测和校正大局部变形区域的方案。为了处理遮挡,自动确定对物体变形和运动的可接受限制。所提出的方法克服了离线学习的需求,并使用输入视频的极少初始帧来学习物体的变形和运动模型。使用各种不同物体的视频展示了该方法的性能。