IEEE Trans Image Process. 2016 Aug;25(8):3572-84. doi: 10.1109/TIP.2016.2570556. Epub 2016 May 18.
Recent advances in online visual tracking focus on designing part-based model to handle the deformation and occlusion challenges. However, previous methods usually consider only the pairwise structural dependences of target parts in two consecutive frames rather than the higher order constraints in multiple frames, making them less effective in handling large deformation and occlusion challenges. This paper describes a new and efficient method for online deformable object tracking. Different from most existing methods, this paper exploits higher order structural dependences of different parts of the tracking target in multiple consecutive frames. We construct a structure-aware hyper-graph to capture such higher order dependences, and solve the tracking problem by searching dense subgraphs on it. Furthermore, we also describe a new evaluating data set for online deformable object tracking (the Deform-SOT data set), which includes 50 challenging sequences with full annotations that represent realistic tracking challenges, such as large deformations and severe occlusions. The experimental result of the proposed method shows considerable improvement in performance over the state-of-the-art tracking methods.
在线视觉跟踪的最新进展集中在设计基于部分的模型上,以处理变形和遮挡挑战。然而,以前的方法通常只考虑目标部分在两帧之间的成对结构依赖性,而不是在多帧中的更高阶约束,这使得它们在处理大变形和遮挡挑战时效果不佳。本文描述了一种新的在线可变形目标跟踪的有效方法。与大多数现有方法不同,本文利用了跟踪目标的不同部分在多个连续帧中的更高阶结构依赖性。我们构建了一个结构感知超图来捕获这种更高阶的依赖性,并通过在其上搜索密集子图来解决跟踪问题。此外,我们还描述了一个用于在线可变形目标跟踪的新评估数据集(Deform-SOT 数据集),该数据集包含 50 个具有完整注释的具有挑战性的序列,这些序列代表了真实的跟踪挑战,例如大变形和严重遮挡。所提出的方法的实验结果表明,在性能上比最先进的跟踪方法有了相当大的提高。