Suppr超能文献

前瞻性分子特征临床研究中的自适应预测模型。

Adaptive prediction model in prospective molecular signature-based clinical studies.

作者信息

Xiao Guanghua, Ma Shuangge, Minna John, Xie Yang

机构信息

Authors' Affiliations: Quantitative Biomedical Research Center, Department of Clinical Sciences; Departments of Internal Medicine and Pharmacology; Simmons Cancer Center; Hamon Center for Therapeutic Oncology, University of Texas Southwestern Medical Center, Dallas, Texas; and Department of Biostatistics, School of Public Health, Yale University, New Haven, Connecticut.

出版信息

Clin Cancer Res. 2014 Feb 1;20(3):531-9. doi: 10.1158/1078-0432.CCR-13-2127. Epub 2013 Dec 9.

Abstract

Use of molecular profiles and clinical information can help predict which treatment would give the best outcome and survival for each individual patient, and thus guide optimal therapy, which offers great promise for the future of clinical trials and practice. High prediction accuracy is essential for selecting the best treatment plan. The gold standard for evaluating the prediction models is prospective clinical studies, in which patients are enrolled sequentially. However, there is no statistical method using this sequential feature to adapt the prediction model to the current patient cohort. In this article, we propose a reweighted random forest (RWRF) model, which updates the weight of each decision tree whenever additional patient information is available, to account for the potential heterogeneity between training and testing data. A simulation study and a lung cancer example are used to show that the proposed method can adapt the prediction model to current patients' characteristics, and, therefore, can improve prediction accuracy significantly. We also show that the proposed method can identify important and consistent predictive variables. Compared with rebuilding the prediction model, the RWRF updates a well-tested model gradually, and all of the adaptive procedure/parameters used in the RWRF model are prespecified before patient recruitment, which are important practical advantages for prospective clinical studies.

摘要

利用分子特征和临床信息有助于预测哪种治疗方法能为每个患者带来最佳疗效和生存结果,从而指导优化治疗,这为临床试验和临床实践的未来带来了巨大希望。高预测准确性对于选择最佳治疗方案至关重要。评估预测模型的金标准是前瞻性临床研究,即按顺序招募患者。然而,目前尚无利用这种顺序特征使预测模型适应当前患者队列的统计方法。在本文中,我们提出了一种重新加权随机森林(RWRF)模型,该模型在有额外患者信息时会更新每棵决策树的权重,以考虑训练数据和测试数据之间潜在的异质性。通过模拟研究和肺癌实例表明,所提出的方法能够使预测模型适应当前患者的特征,从而显著提高预测准确性。我们还表明,该方法能够识别重要且一致的预测变量。与重建预测模型相比,RWRF模型是逐步更新经过充分测试的模型,并且RWRF模型中使用的所有自适应程序/参数在患者招募前就已预先设定,这对于前瞻性临床研究具有重要的实际优势。

相似文献

引用本文的文献

5
New clinical trial designs in the era of precision medicine.精准医学时代的新型临床试验设计。
Mol Oncol. 2019 Mar;13(3):549-557. doi: 10.1002/1878-0261.12465. Epub 2019 Feb 22.

本文引用的文献

7
Predicting the future for people with lung cancer.预测肺癌患者的未来。
Nat Med. 2008 Aug;14(8):812-3. doi: 10.1038/nm0808-812.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验