Suppr超能文献

使用双层集成细胞系-药物网络模型预测抗癌药物反应

Predicting Anticancer Drug Responses Using a Dual-Layer Integrated Cell Line-Drug Network Model.

作者信息

Zhang Naiqian, Wang Haiyun, Fang Yun, Wang Jun, Zheng Xiaoqi, Liu X Shirley

机构信息

Department of Mathematics, Shanghai Normal University, Shanghai, China.

Department of Bioinformatics, School of Life Science and Technology, Tongji University, Shanghai, China.

出版信息

PLoS Comput Biol. 2015 Sep 29;11(9):e1004498. doi: 10.1371/journal.pcbi.1004498. eCollection 2015.

Abstract

The ability to predict the response of a cancer patient to a therapeutic agent is a major goal in modern oncology that should ultimately lead to personalized treatment. Existing approaches to predicting drug sensitivity rely primarily on profiling of cancer cell line panels that have been treated with different drugs and selecting genomic or functional genomic features to regress or classify the drug response. Here, we propose a dual-layer integrated cell line-drug network model, which uses both cell line similarity network (CSN) data and drug similarity network (DSN) data to predict the drug response of a given cell line using a weighted model. Using the Cancer Cell Line Encyclopedia (CCLE) and Cancer Genome Project (CGP) studies as benchmark datasets, our single-layer model with CSN or DSN and only a single parameter achieved a prediction performance comparable to the previously generated elastic net model. When using the dual-layer model integrating both CSN and DSN, our predicted response reached a 0.6 Pearson correlation coefficient with observed responses for most drugs, which is significantly better than the previous results using the elastic net model. We have also applied the dual-layer cell line-drug integrated network model to fill in the missing drug response values in the CGP dataset. Even though the dual-layer integrated cell line-drug network model does not specifically model mutation information, it correctly predicted that BRAF mutant cell lines would be more sensitive than BRAF wild-type cell lines to three MEK1/2 inhibitors tested.

摘要

预测癌症患者对治疗药物反应的能力是现代肿瘤学的一个主要目标,最终应能实现个性化治疗。现有的预测药物敏感性的方法主要依赖于对用不同药物处理过的癌细胞系面板进行分析,并选择基因组或功能基因组特征来对药物反应进行回归分析或分类。在此,我们提出了一种双层整合细胞系 - 药物网络模型,该模型使用细胞系相似性网络(CSN)数据和药物相似性网络(DSN)数据,通过加权模型预测给定细胞系的药物反应。以癌症细胞系百科全书(CCLE)和癌症基因组计划(CGP)研究作为基准数据集,我们仅使用CSN或DSN且只有单个参数的单层模型实现了与先前生成的弹性网络模型相当的预测性能。当使用整合了CSN和DSN的双层模型时,我们对大多数药物的预测反应与观察到的反应达到了0.6的皮尔逊相关系数,这明显优于使用弹性网络模型的先前结果。我们还应用双层细胞系 - 药物整合网络模型来填补CGP数据集中缺失的药物反应值。尽管双层整合细胞系 - 药物网络模型没有专门对突变信息进行建模,但它正确地预测出BRAF突变细胞系对所测试的三种MEK1/2抑制剂比BRAF野生型细胞系更敏感。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e21e/4587957/f221dfd5c4c4/pcbi.1004498.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验