Wagatsuma Nobuhiko, Potjans Tobias C, Diesmann Markus, Sakai Ko, Fukai Tomoki
Zanvyl Krieger Mind/Brain Institute, and Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America ; Brain Science Institute, RIKEN, Wako, Saitama, Japan.
PLoS One. 2013 Dec 6;8(12):e80788. doi: 10.1371/journal.pone.0080788. eCollection 2013.
Directing attention to the spatial location or the distinguishing feature of a visual object modulates neuronal responses in the visual cortex and the stimulus discriminability of subjects. However, the spatial and feature-based modes of attention differently influence visual processing by changing the tuning properties of neurons. Intriguingly, neurons' tuning curves are modulated similarly across different visual areas under both these modes of attention. Here, we explored the mechanism underlying the effects of these two modes of visual attention on the orientation selectivity of visual cortical neurons. To do this, we developed a layered microcircuit model. This model describes multiple orientation-specific microcircuits sharing their receptive fields and consisting of layers 2/3, 4, 5, and 6. These microcircuits represent a functional grouping of cortical neurons and mutually interact via lateral inhibition and excitatory connections between groups with similar selectivity. The individual microcircuits receive bottom-up visual stimuli and top-down attention in different layers. A crucial assumption of the model is that feature-based attention activates orientation-specific microcircuits for the relevant feature selectively, whereas spatial attention activates all microcircuits homogeneously, irrespective of their orientation selectivity. Consequently, our model simultaneously accounts for the multiplicative scaling of neuronal responses in spatial attention and the additive modulations of orientation tuning curves in feature-based attention, which have been observed widely in various visual cortical areas. Simulations of the model predict contrasting differences between excitatory and inhibitory neurons in the two modes of attentional modulations. Furthermore, the model replicates the modulation of the psychophysical discriminability of visual stimuli in the presence of external noise. Our layered model with a biologically suggested laminar structure describes the basic circuit mechanism underlying the attention-mode specific modulations of neuronal responses and visual perception.
将注意力导向视觉对象的空间位置或显著特征,会调节视觉皮层中的神经元反应以及受试者的刺激辨别能力。然而,基于空间和基于特征的注意模式通过改变神经元的调谐特性,对视觉处理产生不同的影响。有趣的是,在这两种注意模式下,不同视觉区域的神经元调谐曲线受到类似的调制。在这里,我们探究了这两种视觉注意模式对视觉皮层神经元方向选择性影响的潜在机制。为此,我们开发了一个分层微电路模型。该模型描述了多个共享感受野的方向特异性微电路,它们由第2/3层、第4层、第5层和第6层组成。这些微电路代表了皮层神经元的功能分组,并通过具有相似选择性的组间侧向抑制和兴奋性连接相互作用。各个微电路在不同层接收自下而上的视觉刺激和自上而下的注意。该模型的一个关键假设是,基于特征的注意选择性地激活针对相关特征的方向特异性微电路,而空间注意则均匀地激活所有微电路,无论其方向选择性如何。因此,我们的模型同时解释了空间注意中神经元反应的乘法缩放以及基于特征的注意中方向调谐曲线的加法调制,这些现象在各种视觉皮层区域中广泛存在。该模型的模拟预测了两种注意调制模式下兴奋性和抑制性神经元之间的对比差异。此外,该模型还复制了在存在外部噪声的情况下视觉刺激心理物理辨别能力的调制。我们具有生物学意义上分层结构的分层模型描述了神经元反应和视觉感知的注意模式特异性调制背后的基本电路机制。