Suppr超能文献

多孔结构的最佳设计以实现最快的液体吸收。

Optimal design of porous structures for the fastest liquid absorption.

机构信息

Centre for Advanced Materials Technology (CAMT), School of Aerospace, Mechanical and Mechatronic Engineering, The University of Sydney , Sydney, New South Wales 2006, Australia.

出版信息

Langmuir. 2014 Jan 14;30(1):149-55. doi: 10.1021/la4034063. Epub 2013 Dec 19.

Abstract

Porous materials engineered for rapid liquid absorption are useful in many applications, including oil recovery, spacecraft life-support systems, moisture management fabrics, medical wound dressings, and microfluidic devices. Dynamic absorption in capillary tubes and porous media is driven by the capillary pressure, which is inversely proportional to the pore size. On the other hand, the permeability of porous materials scales with the square of the pore size. The dynamic competition between these two superimposed mechanisms for liquid absorption through a heterogeneous porous structure may lead to an overall minimum absorption time. In this work, we explore liquid absorption in two different heterogeneous porous structures [three-dimensional (3D) circular tubes and porous layers], which are composed of two sections with variations in radius/porosity and height. The absorption time to fill the voids of porous constructs is expressed as a function of radius/porosity and height of local sections, and the absorption process does not follow the classic Washburn's law. Under given height and void volume, these two-section structures with a negative gradient of radius/porosity against the absorption direction are shown to have faster absorption rates than control samples with uniform radius/porosity. In particular, optimal structural parameters, including radius/porosity and height, are found that account for the minimum absorption time. The liquid absorption in the optimized porous structure is up to 38% faster than in a control sample. The results obtained can be used a priori for the design of porous structures with excellent liquid management property in various fields.

摘要

多孔材料的设计目的是为了实现快速液体吸收,在许多应用中都非常有用,包括采油、航天器生命支持系统、湿度管理织物、医用伤口敷料和微流控器件。毛细管和多孔介质中的动态吸收是由毛细压力驱动的,毛细压力与孔径成反比。另一方面,多孔材料的渗透率与孔径的平方成正比。通过非均相多孔结构进行液体吸收时,这两种叠加机制之间的动态竞争可能导致总体吸收时间最短。在这项工作中,我们研究了两种不同的非均相多孔结构(三维圆形管和多孔层)中的液体吸收,它们由两个部分组成,半径/孔隙率和高度不同。用局部部分的半径/孔隙率和高度来表示填充多孔结构中的空隙所需的吸收时间,并表明吸收过程不遵循经典的 Washburn 定律。在给定的高度和空隙体积下,与具有均匀半径/孔隙率的对照样品相比,具有沿吸收方向的半径/孔隙率负梯度的两段式结构具有更快的吸收速率。特别是,找到了最佳的结构参数,包括半径/孔隙率和高度,以实现最短的吸收时间。优化后的多孔结构中的液体吸收速度比对照样品快 38%。所得到的结果可用于设计具有各种领域优异液体管理性能的多孔结构。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验