Jang Hae Lin, Lee Keunho, Kang Chan Soon, Lee Hye Kyoung, Ahn Hyo-Yong, Jeong Hui-Yun, Park Sunghak, Kim Seul Cham, Jin Kyoungsuk, Park Jimin, Yang Tae-Youl, Kim Jin Hong, Shin Seon Ae, Han Heung Nam, Oh Kyu Hwan, Lee Ho-Young, Lim Jun, Hong Kug Sun, Snead Malcolm L, Xu Jimmy, Nam Ki Tae
†Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Korea.
‡Department of Nuclear Medicine, Seoul National University, Bundang Hospital, Seoul, 463-707, Korea.
ACS Nano. 2015;9(4):4447-57. doi: 10.1021/acsnano.5b01052. Epub 2015 Apr 2.
Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gases, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically inspired, hierarchically organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long-range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite "alive".
自然界设计的循环系统具有层次结构的网络,其通道直径从微米逐渐减小到纳米。在生物系统中的大多数硬组织中,流体、气体、营养物质和废物通过这样的网络不断交换。在此,我们利用在陶瓷生物材料中创建长程、高度互连的纳米通道系统的制造方法,在陶瓷中开发了一种受生物启发的层次结构,以在最小空隙区域实现有效渗透。这种合成模型材料的设计是通过一种新颖的加压烧结工艺实现的,该工艺基于压力依赖性聚合物团聚诱导通道直径逐渐变细。所得系统允许流体和营养物质长程、高效地输送到常规流体传导在没有外力作用下无法到达的部位和界面。我们证明了置于纳米通道系统远端传输终端的哺乳动物骨形成细胞能够以仅依赖于自供能纳米通道供应培养基的方式增殖。这种方法模仿了纳米通道运输在通过提供促进细胞生长和分化的营养供应来维持活体硬组织方面所起的重要作用,从而使陶瓷复合材料具有“活性”。