Suppr超能文献

具有纳米通道自组装网络的生物功能化陶瓷。

Biofunctionalized ceramic with self-assembled networks of nanochannels.

作者信息

Jang Hae Lin, Lee Keunho, Kang Chan Soon, Lee Hye Kyoung, Ahn Hyo-Yong, Jeong Hui-Yun, Park Sunghak, Kim Seul Cham, Jin Kyoungsuk, Park Jimin, Yang Tae-Youl, Kim Jin Hong, Shin Seon Ae, Han Heung Nam, Oh Kyu Hwan, Lee Ho-Young, Lim Jun, Hong Kug Sun, Snead Malcolm L, Xu Jimmy, Nam Ki Tae

机构信息

†Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, Korea.

‡Department of Nuclear Medicine, Seoul National University, Bundang Hospital, Seoul, 463-707, Korea.

出版信息

ACS Nano. 2015;9(4):4447-57. doi: 10.1021/acsnano.5b01052. Epub 2015 Apr 2.

Abstract

Nature designs circulatory systems with hierarchically organized networks of gradually tapered channels ranging from micrometer to nanometer in diameter. In most hard tissues in biological systems, fluid, gases, nutrients and wastes are constantly exchanged through such networks. Here, we developed a biologically inspired, hierarchically organized structure in ceramic to achieve effective permeation with minimum void region, using fabrication methods that create a long-range, highly interconnected nanochannel system in a ceramic biomaterial. This design of a synthetic model-material was implemented through a novel pressurized sintering process formulated to induce a gradual tapering in channel diameter based on pressure-dependent polymer agglomeration. The resulting system allows long-range, efficient transport of fluid and nutrients into sites and interfaces that conventional fluid conduction cannot reach without external force. We demonstrate the ability of mammalian bone-forming cells placed at the distal transport termination of the nanochannel system to proliferate in a manner dependent solely upon the supply of media by the self-powering nanochannels. This approach mimics the significant contribution that nanochannel transport plays in maintaining living hard tissues by providing nutrient supply that facilitates cell growth and differentiation, and thereby makes the ceramic composite "alive".

摘要

自然界设计的循环系统具有层次结构的网络,其通道直径从微米逐渐减小到纳米。在生物系统中的大多数硬组织中,流体、气体、营养物质和废物通过这样的网络不断交换。在此,我们利用在陶瓷生物材料中创建长程、高度互连的纳米通道系统的制造方法,在陶瓷中开发了一种受生物启发的层次结构,以在最小空隙区域实现有效渗透。这种合成模型材料的设计是通过一种新颖的加压烧结工艺实现的,该工艺基于压力依赖性聚合物团聚诱导通道直径逐渐变细。所得系统允许流体和营养物质长程、高效地输送到常规流体传导在没有外力作用下无法到达的部位和界面。我们证明了置于纳米通道系统远端传输终端的哺乳动物骨形成细胞能够以仅依赖于自供能纳米通道供应培养基的方式增殖。这种方法模仿了纳米通道运输在通过提供促进细胞生长和分化的营养供应来维持活体硬组织方面所起的重要作用,从而使陶瓷复合材料具有“活性”。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9f7c/4485927/29bff81e86db/nihms701196f1.jpg

相似文献

4
Preparation and in vitro bioactivity of novel merwinite ceramic.新型镁蔷薇辉石陶瓷的制备及其体外生物活性
Biomed Mater. 2008 Mar;3(1):015015. doi: 10.1088/1748-6041/3/1/015015. Epub 2008 Mar 3.
6
A biomimetic asymmetric responsive single nanochannel.仿生不对称响应单纳米通道。
J Am Chem Soc. 2010 Aug 25;132(33):11736-42. doi: 10.1021/ja1045082.
9
Ceramic bioactivity: progresses, challenges and perspectives.陶瓷生物活性:进展、挑战与展望
Biomed Mater. 2006 Jun;1(2):R31-7. doi: 10.1088/1748-6041/1/2/R01. Epub 2006 May 17.

本文引用的文献

1
Geometry-induced asymmetric capillary flow.几何诱导的不对称毛细管流动。
Langmuir. 2014 May 20;30(19):5448-54. doi: 10.1021/la500479e. Epub 2014 May 7.
6
Directional water collection on wetted spider silk.湿润蜘蛛丝上的定向集水。
Nature. 2010 Feb 4;463(7281):640-3. doi: 10.1038/nature08729.
7
Principles and applications of nanofluidic transport.纳米流体输运的原理与应用。
Nat Nanotechnol. 2009 Nov;4(11):713-20. doi: 10.1038/nnano.2009.332.
8
Nanointerstice-driven microflow.纳米间隙驱动的微流
Small. 2009 Mar;5(5):609-13. doi: 10.1002/smll.200800748.
10
Scaling revisited.
Lab Chip. 2007 Dec;7(12):1630-2. doi: 10.1039/b716545p. Epub 2007 Nov 2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验