NHEERL, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, United States.
N.C. School of Science and Mathethmatics, Durham, NC, United States.
Neurotoxicology. 2014 Jan;40:75-85. doi: 10.1016/j.neuro.2013.11.008. Epub 2013 Dec 8.
Microelectrode arrays (MEAs) can be used to detect drug and chemical induced changes in neuronal network function and have been used for neurotoxicity screening. As a proof-of-concept, the current study assessed the utility of analytical "fingerprinting" using principal components analysis (PCA) and chemical class prediction using support vector machines (SVMs) to classify chemical effects based on MEA data from 16 chemicals. Spontaneous firing rate in primary cortical cultures was increased by bicuculline (BIC), lindane (LND), RDX and picrotoxin (PTX); not changed by nicotine (NIC), acetaminophen (ACE), and glyphosate (GLY); and decreased by muscimol (MUS), verapamil (VER), fipronil (FIP), fluoxetine (FLU), chlorpyrifos oxon (CPO), domoic acid (DA), deltamethrin (DELT) and dimethyl phthalate (DMP). PCA was performed on mean firing rate, bursting parameters and synchrony data for concentrations above each chemical's EC50 for mean firing rate. The first three principal components accounted for 67.5, 19.7, and 6.9% of the data variability and were used to identify separation between chemical classes visually through spatial proximity. In the PCA, there was clear separation of GABAA antagonists BIC, LND, and RDX from other chemicals. For the SVM prediction model, the experiments were classified into the three chemical classes of increasing, decreasing or no change in activity with a mean accuracy of 83.8% under a radial kernel with 10-fold cross-validation. The separation of different chemical classes through PCA and high prediction accuracy in SVM of a small dataset indicates that MEA data may be useful for separating chemicals into effects classes using these or other related approaches.
微电极阵列(MEA)可用于检测药物和化学物质引起的神经网络功能变化,并已用于神经毒性筛选。作为概念验证,本研究评估了使用主成分分析(PCA)进行分析“指纹识别”的效用,以及使用支持向量机(SVM)进行化学分类预测,以根据来自 16 种化学物质的 MEA 数据对化学物质的影响进行分类。原代皮质培养物的自发放电率被荷包牡丹碱(BIC)、林丹(LND)、黑索金(RDX)和苦毒蕈碱(PTX)增加;未被尼古丁(NIC)、对乙酰氨基酚(ACE)和草甘膦(GLY)改变;被 muscimol(MUS)、维拉帕米(VER)、氟虫腈(FIP)、氟西汀(FLU)、毒死蜱氧(CPO)、软骨藻酸(DA)、溴氰菊酯(DELT)和邻苯二甲酸二甲酯(DMP)降低。在平均放电率、爆发参数和同步数据上进行 PCA,浓度高于每种化学物质的平均放电率 EC50。前三个主成分占数据变异性的 67.5%、19.7%和 6.9%,用于通过空间接近度直观地识别化学类别的分离。在 PCA 中,GABAA 拮抗剂 BIC、LND 和 RDX 与其他化学物质明显分离。对于 SVM 预测模型,使用径向核和 10 倍交叉验证,将实验分为活性增加、减少或无变化的三个化学类,平均准确率为 83.8%。通过 PCA 对不同化学类别的分离和 SVM 中对小数据集的高预测准确性表明,MEA 数据可能有助于使用这些或其他相关方法将化学物质分离成作用类别。