Pan Jia-Chiun, Huang Guan-Hua
Department of Mathematics, National Chung Cheng University, Minxiong, Taiwan.
Psychometrika. 2014 Oct;79(4):621-46. doi: 10.1007/s11336-013-9368-7. Epub 2013 Dec 11.
This paper focuses on analyzing data collected in situations where investigators use multiple discrete indicators as surrogates, for example, a set of questionnaires. A very flexible latent class model is used for analysis. We propose a Bayesian framework to perform the joint estimation of the number of latent classes and model parameters. The proposed approach applies the reversible jump Markov chain Monte Carlo to analyze finite mixtures of multivariate multinomial distributions. In the paper, we also develop a procedure for the unique labeling of the classes. We have carried out a detailed sensitivity analysis for various hyperparameter specifications, which leads us to make standard default recommendations for the choice of priors. The usefulness of the proposed method is demonstrated through computer simulations and a study on subtypes of schizophrenia using the Positive and Negative Syndrome Scale (PANSS).
本文着重分析在研究人员使用多个离散指标作为替代指标的情况下收集的数据,例如一组问卷。我们使用一种非常灵活的潜在类别模型进行分析。我们提出了一个贝叶斯框架来对潜在类别的数量和模型参数进行联合估计。所提出的方法应用可逆跳跃马尔可夫链蒙特卡罗方法来分析多元多项分布的有限混合。在本文中,我们还开发了一种对类别进行唯一标记的程序。我们对各种超参数规格进行了详细的敏感性分析,这使我们能够对先验的选择提出标准的默认建议。通过计算机模拟以及使用阳性和阴性症状量表(PANSS)对精神分裂症亚型的研究,证明了所提出方法的实用性。