Suppr超能文献

使用数学模型和评分系统对附件肿瘤进行术前诊断:系统评价和荟萃分析。

Presurgical diagnosis of adnexal tumours using mathematical models and scoring systems: a systematic review and meta-analysis.

机构信息

Department of Development and Regeneration, KU Leuven, Leuven, Belgium.

出版信息

Hum Reprod Update. 2014 May-Jun;20(3):449-62. doi: 10.1093/humupd/dmt059. Epub 2013 Dec 9.

Abstract

BACKGROUND Characterizing ovarian pathology is fundamental to optimizing management in both pre- and post-menopausal women. Inappropriate referral to oncology services can lead to unnecessary surgery or overly radical interventions compromising fertility in young women, whilst the consequences of failing to recognize cancer significantly impact on prognosis. By reflecting on recent developments of new diagnostic tests for preoperative identification of malignant disease in women with adnexal masses, we aimed to update a previous systematic review and meta-analysis. METHODS An extended search was performed in MEDLINE (PubMed) and EMBASE (OvidSp) from March 2008 to October 2013. Eligible studies provided information on diagnostic test performance of models, designed to predict ovarian cancer in a preoperative setting, that contained at least two variables. Study selection and extraction of study characteristics, types of bias, and test performance was performed independently by two reviewers. Quality was assessed using a modified version of the QUADAS assessment tool. A bivariate hierarchical random effects model was used to produce summary estimates of sensitivity and specificity with 95% confidence intervals or plot summary ROC curves for all models considered. RESULTS Our extended search identified a total of 1542 new primary articles. In total, 195 studies were eligible for qualitative data synthesis, and 96 validation studies reporting on 19 different prediction models met the predefined criteria for quantitative data synthesis. These models were tested on 26 438 adnexal masses, including 7199 (27%) malignant and 19 239 (73%) benign masses. The Risk of Malignancy Index (RMI) was the most frequently validated model. The logistic regression model LR2 with a risk cut-off of 10% and Simple Rules (SR), both developed by the International Ovarian Tumor Analysis (IOTA) study, performed better than all other included models with a pooled sensitivity and specificity, respectively, of 0.92 [95% CI 0.88-0.95] and 0.83 [95% CI 0.77-0.88] for LR2 and 0.93 [95% CI 0.89-0.95] and 0.81 [95% CI 0.76-0.85] for SR. A meta-analysis of centre-specific results stratified for menopausal status of two multicentre cohorts comparing LR2, SR and RMI-1 (using a cut-off of 200) showed a pooled sensitivity and specificity in premenopausal women for LR2 of 0.85 [95% CI 0.75-0.91] and 0.91 [95% CI 0.83-0.96] compared with 0.93 [95% CI 0.84-0.97] and 0.83 [95% CI 0.73-0.90] for SR and 0.44 [95% CI 0.28-0.62] and 0.95 [95% CI 0.90-0.97] for RMI-1. In post-menopausal women, sensitivity and specificity of LR2, SR and RMI-1 were 0.94 [95% CI 0.89-0.97] and 0.70 [95% CI 0.62-0.77], 0.93 [95% CI 0.88-0.96] and 0.76 [95% CI 0.69-0.82], and 0.79 [95% CI 0.72-0.85] and 0.90 [95% CI 0.84-0.94], respectively. CONCLUSIONS An evidence-based approach to the preoperative characterization of any adnexal mass should incorporate the use of IOTA Simple Rules or the LR2 model, particularly for women of reproductive age.

摘要

背景

对卵巢病理进行特征描述是优化绝经前和绝经后妇女管理的基础。如果将患者不恰当地转诊至肿瘤科,可能会导致不必要的手术或过度激进的干预,从而损害年轻女性的生育能力;而未能识别癌症会显著影响预后。通过反思最近在术前识别附件包块的恶性疾病的新诊断试验的发展,我们旨在更新以前的系统评价和荟萃分析。

方法

我们在 2008 年 3 月至 2013 年 10 月期间在 MEDLINE(PubMed)和 EMBASE(OvidSp)中进行了扩展搜索。符合条件的研究提供了用于预测卵巢癌的模型的诊断测试性能信息,这些模型设计用于术前设置,至少包含两个变量。研究选择和提取研究特征、偏倚类型和测试性能由两位评审员独立进行。使用 QUADAS 评估工具的修改版本评估质量。使用双变量分层随机效应模型产生所有考虑模型的敏感性和特异性的汇总估计值,置信区间或绘制汇总 ROC 曲线。

结果

我们的扩展搜索共确定了 1542 篇新的原发性文章。共有 195 项研究符合定性数据综合的条件,96 项验证研究报告了 19 个不同的预测模型,符合定量数据综合的预定义标准。这些模型在 26438 个附件肿块上进行了测试,包括 7199 个(27%)恶性肿块和 19239 个(73%)良性肿块。风险恶性指数(RMI)是最常被验证的模型。国际卵巢肿瘤分析(IOTA)研究开发的逻辑回归模型 LR2 和简单规则(SR),风险截止值分别为 10%和 10%,其敏感性和特异性分别为 0.92 [95%CI 0.88-0.95]和 0.83 [95%CI 0.77-0.88],LR2 和 0.93 [95%CI 0.89-0.95]和 0.81 [95%CI 0.76-0.85]用于 SR。对两个多中心队列的中心特异性结果进行分层,比较 LR2、SR 和 RMI-1(使用截止值 200)的荟萃分析显示,LR2 在绝经前妇女中的敏感性和特异性为 0.85 [95%CI 0.75-0.91]和 0.91 [95%CI 0.83-0.96],而 SR 为 0.93 [95%CI 0.84-0.97]和 0.83 [95%CI 0.73-0.90],RMI-1 为 0.44 [95%CI 0.28-0.62]和 0.95 [95%CI 0.90-0.97]。在绝经后妇女中,LR2、SR 和 RMI-1 的敏感性和特异性分别为 0.94 [95%CI 0.89-0.97]和 0.70 [95%CI 0.62-0.77],0.93 [95%CI 0.88-0.96]和 0.76 [95%CI 0.69-0.82],以及 0.79 [95%CI 0.72-0.85]和 0.90 [95%CI 0.84-0.94]。

结论

对任何附件包块的术前特征描述应采用 IOTA 简单规则或 LR2 模型进行基于证据的方法,特别是对于生育年龄的妇女。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验