Suppr超能文献

国际卵巢肿瘤分析(IOTA)预测模型在术前鉴别附件良恶性病变中的表现:希腊一家三级护理医院的初步结果

Performance of International Ovarian Tumor Analysis (IOTA) predictive models in preoperative discrimination between benign and malignant adnexal lesions: preliminary outcomes in a Tertiary Care Hospital in Greece.

作者信息

Kougioumtsidou Anna, Karavida Aikaterini, Mamopoulos Apostolos, Dagklis Themistoklis, Tsakiridis Ioannis, Kopatsaris Stergios, Michos Georgios, Athanasiadis Apostolos P, Kalogiannidis Ioannis

机构信息

3rd Department of Obstetrics and Gynecology, Aristotle University of Thessaloniki, Ippokrateio General Hospital of Thessaloniki, Kostantinoupoleos Street 49, 546 42, Thessaloníki, Greece.

出版信息

Arch Gynecol Obstet. 2025 Jan;311(1):113-122. doi: 10.1007/s00404-024-07859-7. Epub 2024 Dec 10.

Abstract

OBJECTIVES

To apply the International Ovarian Tumor Analysis (IOTA) predictive models, the logistic regression model 2 (LR2) and the IOTA Assessment of Different NEoplasias in the adneXa (ADNEX), in patients with ovarian masses and to compare their performance in preoperative discrimination between benign and malignant adnexal lesions.

METHODS

This was a retrospective diagnostic accuracy study with prospectively collected data, performed between January 2019 and December 2022, in a single tertiary gynecologic oncology center in Greece. The study included women with an adnexal lesion which underwent surgery within 6 months after of using the LR2 and ADNEX protocol to assess the risk of malignancy. Correlation of the ultrasound findings with the postoperative histopathological analysis was performed. Receiver-operating characteristics (ROC) curve analysis was used to determine the diagnostic accuracy of the models to classify tumors; sensitivity and specificity were determined for each model and their performance was compared.

RESULTS

Of the136 participants, 117 (86%) had benign ovarian masses and 19 (14%) had malignant tumors. The area under the ROC curve (AUC) of the LR2 model was 0.84 (95% CI 0.74-0.93), which was significantly higher than the AUC for ADNEX model: 0.78 (95% CI 0.67-0.89). At a cut off > 10%, the LR2 model had the highest sensitivity 89.5% (95% CI 66.9-98.7) and specificity 85.1% (95% CI 76.9-91.2) compared to ADNEX model [sensitivity 84.2% (95% CI 60.4-96.6) and specificity 71.8% (95% CI 62.7-79.7)].

CONCLUSIONS

IOTA LR2 had the highest accuracy in differentiating between benign and malignant ovarian masses. IOTA LR2 and ADNEX models were both useful tools in discriminating between benign and malignant ovarian masses.

摘要

目的

应用国际卵巢肿瘤分析(IOTA)预测模型,即逻辑回归模型2(LR2)和IOTA附件不同肿瘤评估(ADNEX),对卵巢肿块患者进行评估,并比较它们在术前鉴别良性和恶性附件病变方面的表现。

方法

这是一项回顾性诊断准确性研究,数据前瞻性收集,于2019年1月至2022年12月在希腊一家单一的三级妇科肿瘤中心进行。该研究纳入了在使用LR2和ADNEX方案评估恶性风险后6个月内接受手术的附件病变女性。将超声检查结果与术后组织病理学分析进行相关性分析。采用受试者操作特征(ROC)曲线分析来确定模型对肿瘤分类的诊断准确性;确定每个模型的敏感性和特异性,并比较它们的表现。

结果

136名参与者中,117名(86%)患有良性卵巢肿块,19名(14%)患有恶性肿瘤。LR2模型的ROC曲线下面积(AUC)为0.84(95%CI 0.74-0.93),显著高于ADNEX模型的AUC:0.78(95%CI 0.67-0.89)。在截断值>10%时,与ADNEX模型相比,LR2模型具有最高的敏感性89.5%(95%CI 66.9-98.7)和特异性85.1%(95%CI 76.9-91.2)[敏感性84.2%(95%CI 60.4-96.6)和特异性71.8%(95%CI 62.7-79.7)]。

结论

IOTA LR2在鉴别良性和恶性卵巢肿块方面具有最高的准确性。IOTA LR2和ADNEX模型都是鉴别良性和恶性卵巢肿块的有用工具。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验