Suppr超能文献

基于机器学习的无轨道键断裂。

Orbital-free bond breaking via machine learning.

机构信息

Departments of Chemistry and of Physics, University of California, Irvine, California 92697, USA.

Institute of Pharmaceutical Sciences, ETH Zurich, 8093 Zürich, Switzerland.

出版信息

J Chem Phys. 2013 Dec 14;139(22):224104. doi: 10.1063/1.4834075.

Abstract

Using a one-dimensional model, we explore the ability of machine learning to approximate the non-interacting kinetic energy density functional of diatomics. This nonlinear interpolation between Kohn-Sham reference calculations can (i) accurately dissociate a diatomic, (ii) be systematically improved with increased reference data and (iii) generate accurate self-consistent densities via a projection method that avoids directions with no data. With relatively few densities, the error due to the interpolation is smaller than typical errors in standard exchange-correlation functionals.

摘要

我们使用一维模型来探索机器学习在逼近双原子分子的无相互作用动能密度泛函方面的能力。这种 Kohn-Sham 参考计算之间的非线性插值可以 (i) 准确地离解双原子,(ii) 通过避免无数据方向的投影方法,随着参考数据的增加而系统地改进,以及 (iii) 生成准确的自洽密度。使用相对较少的密度,插值引起的误差小于标准交换相关泛函中的典型误差。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验