Departments of Chemistry and of Physics, University of California, Irvine, California 92697, USA.
Phys Rev Lett. 2012 Jun 22;108(25):253002. doi: 10.1103/PhysRevLett.108.253002. Epub 2012 Jun 19.
Machine learning is used to approximate density functionals. For the model problem of the kinetic energy of noninteracting fermions in 1D, mean absolute errors below 1 kcal/mol on test densities similar to the training set are reached with fewer than 100 training densities. A predictor identifies if a test density is within the interpolation region. Via principal component analysis, a projected functional derivative finds highly accurate self-consistent densities. The challenges for application of our method to real electronic structure problems are discussed.
机器学习被用于逼近密度泛函。对于非相互作用费米子在 1D 中的动能的模型问题,在与训练集相似的测试密度上,通过少于 100 个训练密度就可以达到低于 1 kcal/mol 的平均绝对误差。预测器可以识别测试密度是否在插值区域内。通过主成分分析,投影泛函导数可以找到高度精确的自洽密度。讨论了将我们的方法应用于实际电子结构问题的挑战。