Institute of Experimental Physics, Graz University of Technology, Petersgasse 16, 8010 Graz, Austria.
J Chem Theory Comput. 2020 Sep 8;16(9):5685-5694. doi: 10.1021/acs.jctc.0c00580. Epub 2020 Aug 25.
Orbital-free approaches might offer a way to boost the applicability of density functional theory by orders of magnitude in system size. An important ingredient for this endeavor is the kinetic energy density functional. Snyder et al. [ 2012, 108, 253002] presented a machine learning approximation for this functional achieving chemical accuracy on a one-dimensional model system. However, a poor performance with respect to the functional derivative, a crucial element in iterative energy minimization procedures, enforced the application of a computationally expensive projection method. In this work we circumvent this issue by including the functional derivative into the training of various machine learning models. Besides kernel ridge regression, the original method of choice, we also test the performance of convolutional neural network techniques borrowed from the field of image recognition.
无轨道方法可能提供一种方法,可以将密度泛函理论在系统尺寸上的适用性提高几个数量级。这项工作的一个重要组成部分是动能密度泛函。Snyder 等人 [2012, 108, 253002] 提出了一种机器学习近似方法,在一维模型系统上达到了化学精度。然而,该方法在功能导数方面的性能较差,功能导数是迭代能量最小化过程中的一个关键元素,这就强制使用了一种计算成本高昂的投影方法。在这项工作中,我们通过将功能导数纳入各种机器学习模型的训练来解决这个问题。除了核岭回归(原始选择方法),我们还测试了从图像识别领域借用的卷积神经网络技术的性能。