Suppr超能文献

使用原子力显微镜对软材料进行液内纳米力学测量的压痕量化:活细胞的速率依赖性弹性模量

Indentation quantification for in-liquid nanomechanical measurement of soft material using an atomic force microscope: rate-dependent elastic modulus of live cells.

作者信息

Ren Juan, Yu Shiyan, Gao Nan, Zou Qingze

机构信息

Department of Mechanical and Aerospace Engineering, Rutgers, The State University of New Jersey, 98 Brett Road, Piscataway, New Jersey 08854, USA.

Department of Biological Sciences, Rutgers, The State University of New Jersey, Newark, New Jersey 07102, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052711. doi: 10.1103/PhysRevE.88.052711. Epub 2013 Nov 18.

Abstract

In this paper, a control-based approach to replace the conventional method to achieve accurate indentation quantification is proposed for nanomechanical measurement of live cells using atomic force microscope. Accurate indentation quantification is central to probe-based nanomechanical property measurement. The conventional method for in-liquid nanomechanical measurement of live cells, however, fails to accurately quantify the indentation as effects of the relative probe acceleration and the hydrodynamic force are not addressed. As a result, significant errors and uncertainties are induced in the nanomechanical properties measured. In this paper, a control-based approach is proposed to account for these adverse effects by tracking the same excitation force profile on both a live cell and a hard reference sample through the use of an advanced control technique, and by quantifying the indentation from the difference of the cantilever base displacement in these two measurements. The proposed control-based approach not only eliminates the relative probe acceleration effect with no need to calibrate the parameters involved, but it also reduces the hydrodynamic force effect significantly when the force load rate becomes high. We further hypothesize that, by using the proposed control-based approach, the rate-dependent elastic modulus of live human epithelial cells under different stress conditions can be reliably quantified to predict the elasticity evolution of cell membranes, and hence can be used to predict cellular behaviors. By implementing the proposed approach, the elastic modulus of HeLa cells before and after the stress process were quantified as the force load rate was changed over three orders of magnitude from 0.1 to 100 Hz, where the amplitude of the applied force and the indentation were at 0.4-2 nN and 250-450 nm, respectively. The measured elastic modulus of HeLa cells showed a clear power-law dependence on the load rate, both before and after the stress process. Moreover, the elastic modulus of HeLa cells was substantially reduced by two to five times due to the stress process. Thus, our measurements demonstrate that the control-based protocol is effective in quantifying and characterizing the evolution of nanomechanical properties during the stress process of live cells.

摘要

本文提出了一种基于控制的方法来取代传统方法,以实现使用原子力显微镜对活细胞进行纳米力学测量时的精确压痕量化。精确的压痕量化是基于探针的纳米力学性能测量的核心。然而,传统的活细胞液体中纳米力学测量方法未能准确量化压痕,因为未考虑相对探针加速度和流体动力的影响。结果,在测量的纳米力学性能中引入了显著的误差和不确定性。本文提出了一种基于控制的方法,通过使用先进的控制技术在活细胞和硬参考样品上跟踪相同的激发力曲线,并通过量化这两次测量中悬臂梁基部位移的差异来量化压痕,从而解决这些不利影响。所提出的基于控制的方法不仅无需校准相关参数即可消除相对探针加速度的影响,而且在力加载速率较高时还能显著降低流体动力的影响。我们进一步假设,通过使用所提出的基于控制的方法,可以可靠地量化不同应力条件下活的人类上皮细胞的速率依赖性弹性模量,以预测细胞膜的弹性演变,从而可用于预测细胞行为。通过实施所提出的方法,当力加载速率在0.1至100 Hz的三个数量级范围内变化时,量化了应激过程前后HeLa细胞的弹性模量,其中施加力的幅度和压痕分别为0.4 - 2 nN和250 - 450 nm。测量的HeLa细胞弹性模量在应激过程前后均显示出对加载速率明显的幂律依赖性。此外,由于应激过程,HeLa细胞的弹性模量大幅降低了两到五倍。因此,我们的测量表明,基于控制的方案在量化和表征活细胞应激过程中纳米力学性能的演变方面是有效的。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/96cd/4172360/606e31858816/nihms628182f1.jpg

相似文献

本文引用的文献

6
Focal adhesion kinase stabilizes the cytoskeleton.黏着斑激酶稳定细胞骨架。
Biophys J. 2011 Nov 2;101(9):2131-8. doi: 10.1016/j.bpj.2011.09.043. Epub 2011 Nov 1.
8
Mechanics and regulation of cell shape during the cell cycle.细胞周期中细胞形状的力学与调控
Results Probl Cell Differ. 2011;53:31-73. doi: 10.1007/978-3-642-19065-0_3.
10
Cell mechanics and the cytoskeleton.细胞力学与细胞骨架。
Nature. 2010 Jan 28;463(7280):485-92. doi: 10.1038/nature08908.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验