Nganguia H, Young Y-N
Department of Mathematical Sciences, New Jersey Institute of Technology, Newark, New Jersey 07102, USA.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Nov;88(5):052718. doi: 10.1103/PhysRevE.88.052718. Epub 2013 Nov 25.
In this work, we develop a theoretical model to explain the equilibrium spheroidal deformation of a giant unilamellar vesicle (GUV) under an alternating (ac) electric field. Suspended in a leaky dielectric fluid, the vesicle membrane is modeled as a thin capacitive spheroidal shell. The equilibrium vesicle shape results from the balance between mechanical forces from the viscous fluid, the restoring elastic membrane forces, and the externally imposed electric forces. Our spheroidal model predicts a deformation-dependent transmembrane potential, and is able to capture large deformation of a vesicle under an electric field. A detailed comparison against both experiments and small-deformation (quasispherical) theory showed that the spheroidal model gives better agreement with experiments in terms of the dependence on fluid conductivity ratio, permittivity ratio, vesicle size, electric field strength, and frequency. The spheroidal model also allows for an asymptotic analysis on the crossover frequency where the equilibrium vesicle shape crosses over between prolate and oblate shapes. Comparisons show that the spheroidal model gives better agreement with experimental observations.
在这项工作中,我们建立了一个理论模型来解释巨型单层囊泡(GUV)在交变(ac)电场作用下的平衡椭球变形。悬浮在漏电介质流体中的囊泡膜被建模为一个薄的电容性椭球壳。平衡囊泡形状是由粘性流体的机械力、恢复弹性膜力和外部施加的电力之间的平衡产生的。我们的椭球模型预测了与变形相关的跨膜电位,并且能够捕捉电场作用下囊泡的大变形。与实验和小变形(准球形)理论的详细比较表明,在对流体电导率比、介电常数比、囊泡大小、电场强度和频率的依赖性方面,椭球模型与实验结果的吻合度更好。椭球模型还允许对平衡囊泡形状在长椭球和扁椭球形状之间转变的交叉频率进行渐近分析。比较表明,椭球模型与实验观测结果的吻合度更好。